Suppr超能文献

使用非侵入式混合脑机接口和共享控制策略的脑控机械臂系统。

A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy.

机构信息

State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China.

Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom.

出版信息

J Neural Eng. 2021 May 5;18(4). doi: 10.1088/1741-2552/abf8cb.

Abstract

The electroencephalography (EEG)-based brain-computer interfaces (BCIs) have been used in the control of robotic arms. The performance of non-invasive BCIs may not be satisfactory due to the poor quality of EEG signals, so the shared control strategies were tried as an alternative solution. However, most of the existing shared control methods set the arbitration rules manually, which highly depended on the specific tasks and developer's experience. In this study, we proposed a novel shared control model that automatically optimized the control commands in a dynamical way based on the context in real-time control. Besides, we employed the hybrid BCI to better allocate commands with multiple functions. The system allowed non-invasive BCI users to manipulate a robotic arm moving in a three-dimensional (3D) space and complete a pick-place task of multiple objects.Taking the scene information obtained by computer vision as a knowledge base, a machine agent was designed to infer the user's intention and generate automatic commands. Based on the inference confidence and user's characteristic, the proposed shared control model fused the machine autonomy and human intention dynamically for robotic arm motion optimization during the online control. In addition, we introduced a hybrid BCI scheme that applied steady-state visual evoked potentials and motor imagery to the divided primary and secondary BCI interfaces to better allocate the BCI resources (e.g. decoding computing power, screen occupation) and realize the multi-dimensional control of the robotic arm.Eleven subjects participated in the online experiments of picking and placing five objects that scattered at different positions in a 3D workspace. The results showed that most of the subjects could control the robotic arm to complete accurate and robust picking task with an average success rate of approximately 85% under the shared control strategy, while the average success rate of placing task controlled by pure BCI was 50% approximately.In this paper, we proposed a novel shared controller for motion automatic optimization, together with a hybrid BCI control scheme that allocated paradigms according to the importance of commands to realize multi-dimensional and effective control of a robotic arm. Our study indicated that the shared control strategy with hybrid BCI could greatly improve the performance of the brain-actuated robotic arm system.

摘要

基于脑电图(EEG)的脑机接口(BCI)已被用于控制机器人手臂。由于 EEG 信号质量较差,非侵入性 BCI 的性能可能并不令人满意,因此尝试了共享控制策略作为替代解决方案。然而,大多数现有的共享控制方法都是手动设置仲裁规则,这高度依赖于特定任务和开发者的经验。在这项研究中,我们提出了一种新的共享控制模型,该模型可以根据实时控制中的上下文自动优化控制命令。此外,我们采用混合 BCI 更好地分配具有多种功能的命令。该系统允许非侵入性 BCI 用户在三维(3D)空间中操纵机器人手臂并完成多个物体的拾取和放置任务。利用计算机视觉获得的场景信息作为知识库,设计了一个机器代理来推断用户的意图并生成自动命令。基于推断的置信度和用户的特征,所提出的共享控制模型在在线控制过程中动态融合机器自主性和人类意图,以优化机器人手臂的运动。此外,我们引入了一种混合 BCI 方案,将稳态视觉诱发电位和运动想象应用于划分的主 BCI 接口和次 BCI 接口,以更好地分配 BCI 资源(例如,解码计算能力、屏幕占用)并实现机器人手臂的多维控制。11 名受试者参与了在 3D 工作空间中不同位置散布的五个物体的拾取和放置的在线实验。结果表明,在共享控制策略下,大多数受试者可以控制机器人手臂完成准确和稳健的拾取任务,平均成功率约为 85%,而纯 BCI 控制的放置任务的平均成功率约为 50%。在本文中,我们提出了一种用于运动自动优化的新型共享控制器,以及一种混合 BCI 控制方案,该方案根据命令的重要性分配范式,以实现机器人手臂的多维和有效控制。我们的研究表明,具有混合 BCI 的共享控制策略可以极大地提高脑驱动机器人手臂系统的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验