Suppr超能文献

稳态下的耗散- recurrence不等式。 注:这里“recurrence”不太明确准确意思,可能是有特定专业含义的术语,你可根据实际情况进一步确认准确翻译。

Dissipation-recurrence inequalities at the steady state.

作者信息

Frezzato Diego

机构信息

Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.

出版信息

Phys Rev E. 2021 Mar;103(3-1):032112. doi: 10.1103/PhysRevE.103.032112.

Abstract

For Markov jump processes in out-of-equilibrium steady state, we present inequalities which link the average rate of entropy production with the timing of the site-to-site recurrences. Such inequalities are upper bounds on the average rate of entropy production. The combination with the finite-time thermodynamic uncertainty relation (a lower bound) yields inequalities of the pure kinetic kind for the relative precision of a dynamical output. After having derived the main relations for the discrete case, we sketch the possible extension to overdamped Markov dynamics on continuous degrees of freedom, treating explicitly the case of one-dimensional diffusion in tilted periodic potentials; an upper bound on the average velocity is derived, in terms of the average rate of entropy production and the microscopic diffusion coefficient, which corresponds to the finite-time thermodynamic uncertainty relation in the limit of vanishingly small observation time.

摘要

对于处于非平衡稳态的马尔可夫跳跃过程,我们给出了将熵产生的平均速率与位点间重现时间联系起来的不等式。此类不等式是熵产生平均速率的上界。与有限时间热力学不确定性关系(一个下界)相结合,可得出关于动力学输出相对精度的纯动力学类型的不等式。在推导了离散情形的主要关系之后,我们概述了将其扩展到具有连续自由度的过阻尼马尔可夫动力学的可能性,具体处理了倾斜周期势中一维扩散的情形;根据熵产生的平均速率和微观扩散系数,得出了平均速度的一个上界,它在观测时间趋近于零的极限情况下对应于有限时间热力学不确定性关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验