Frezzato Diego
Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
Phys Rev E. 2021 Mar;103(3-1):032112. doi: 10.1103/PhysRevE.103.032112.
For Markov jump processes in out-of-equilibrium steady state, we present inequalities which link the average rate of entropy production with the timing of the site-to-site recurrences. Such inequalities are upper bounds on the average rate of entropy production. The combination with the finite-time thermodynamic uncertainty relation (a lower bound) yields inequalities of the pure kinetic kind for the relative precision of a dynamical output. After having derived the main relations for the discrete case, we sketch the possible extension to overdamped Markov dynamics on continuous degrees of freedom, treating explicitly the case of one-dimensional diffusion in tilted periodic potentials; an upper bound on the average velocity is derived, in terms of the average rate of entropy production and the microscopic diffusion coefficient, which corresponds to the finite-time thermodynamic uncertainty relation in the limit of vanishingly small observation time.
对于处于非平衡稳态的马尔可夫跳跃过程,我们给出了将熵产生的平均速率与位点间重现时间联系起来的不等式。此类不等式是熵产生平均速率的上界。与有限时间热力学不确定性关系(一个下界)相结合,可得出关于动力学输出相对精度的纯动力学类型的不等式。在推导了离散情形的主要关系之后,我们概述了将其扩展到具有连续自由度的过阻尼马尔可夫动力学的可能性,具体处理了倾斜周期势中一维扩散的情形;根据熵产生的平均速率和微观扩散系数,得出了平均速度的一个上界,它在观测时间趋近于零的极限情况下对应于有限时间热力学不确定性关系。