Maches Z, Bartley E, Borjon J, Carretero-González R
Nonlinear Dynamical Systems Group and Department of Mathematics and Statistics, San Diego State University, San Diego, California 92182-7720, USA.
Computational Science Research Center, San Diego State University, San Diego, California 92182-7720, USA.
Phys Rev E. 2021 Mar;103(3-1):032205. doi: 10.1103/PhysRevE.103.032205.
A wake of vortices with sufficiently spaced cores may be represented via the point-vortex model from classical hydrodynamics. We use potential theory representations of vortices to examine the emergence and stability of complex vortex wakes, more particularly the von Kármán vortex street composed of regular polygonal-like clusters of same-signed vortices. We investigate the existence and stability of these streets represented through spatially periodic vortices. We introduce a physically inspired point-vortex model that captures the stability of infinite vortex streets with a finite number of procedurally generated vortices, allowing for numerical analysis of the behavior of vortex streets as they dynamically form.
具有足够间隔核心的涡旋尾迹可以通过经典流体动力学中的点涡模型来表示。我们使用涡旋的势理论表示来研究复杂涡旋尾迹的出现和稳定性,更具体地说是由同号涡旋的规则多边形状簇组成的冯·卡门涡街。我们研究通过空间周期性涡旋表示的这些涡街的存在性和稳定性。我们引入一个受物理启发的点涡模型,该模型用有限数量的程序生成的涡旋来捕捉无限涡街的稳定性,从而能够对涡街动态形成时的行为进行数值分析。