Department of Computer Science, University of Verona, Verona, Italy.
Bioinspir Biomim. 2011 Sep;6(3):036001. doi: 10.1088/1748-3182/6/3/036001. Epub 2011 Jun 13.
In this work, we focus on biomimetic lateral line sensing in Kármán vortex streets. After generating a Kármán street in a controlled environment, we examine the hydrodynamic images obtained with digital particle image velocimetry (DPIV). On the grounds that positioning in the flow and interaction with the vortices govern bio-inspired underwater locomotion, we inspect the fluid in the swimming robot frame of reference. We spatially subsample the flow field obtained using DPIV to emulate the local flow around the body. In particular, we look at various sensor configurations in order to reliably identify the vortex shedding frequency, wake wavelength and downstream flow speed. Moreover, we propose methods that differentiate between being in and out of the Kármán street with >70% accuracy, distinguish right from left with respect to Kármán vortex street centreline (>80%) and highlight when the sensor system enters the vortex formation zone (>75%). Finally, we present a method that estimates the relative position of a sensor array with respect to the vortex formation point within 15% error margin.
在这项工作中,我们专注于卡门涡街中的仿生侧线感应。在控制环境中产生卡门街后,我们用数字粒子图像测速法(DPIV)检查所获得的水动力图像。鉴于在流场中的定位和与涡旋的相互作用控制了仿生水下运动,我们检查了游泳机器人参考系中的流体。我们对使用 DPIV 获得的流场进行空间子采样,以模拟身体周围的局部流场。特别是,我们研究了各种传感器配置,以可靠地识别涡旋脱落频率、尾流波长和下游流速。此外,我们提出了一些方法,可以以超过 70%的准确率来区分是否处于卡门涡街中,以超过 80%的准确率来区分相对于卡门涡街中心线的左右位置,并以超过 75%的准确率来突出传感器系统进入涡旋形成区的时刻。最后,我们提出了一种方法,可以在 15%的误差范围内估计传感器阵列相对于涡旋形成点的相对位置。