The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA; email:
Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
Annu Rev Biomed Eng. 2021 Jul 13;23:407-432. doi: 10.1146/annurev-bioeng-091520-025358. Epub 2021 Apr 16.
Microengineering advances have enabled the development of perfusable, endothelialized models of the microvasculature that recapitulate the unique biological and biophysical conditions of the microcirculation in vivo. Indeed, at that size scale (<100 μm)-where blood no longer behaves as a simple continuum fluid; blood cells approximate the size of the vessels themselves; and complex interactions among blood cells, plasma molecules, and the endothelium constantly ensue-vascularized microfluidics are ideal tools to investigate these microvascular phenomena. Moreover, perfusable, endothelialized microfluidics offer unique opportunities for investigating microvascular diseases by enabling systematic dissection of both the blood and vascular components of the pathophysiology at hand. We review () the state of the art in microvascular devices and () the myriad of microvascular diseases and pressing challenges. The engineering community has unique opportunities to innovate with new microvascular devices and to partner with biomedical researchers to usher in a new era of understanding and discovery of microvascular diseases.
微工程技术的进步使可灌注、内皮化的微血管模型得以发展,这些模型再现了体内微循环独特的生物学和生物物理条件。实际上,在这种尺寸范围内(<100μm)——血液不再表现为简单的连续流体;血细胞接近血管本身的大小;并且血细胞、血浆分子和内皮之间的复杂相互作用不断发生——血管化微流控是研究这些微血管现象的理想工具。此外,可灌注、内皮化的微流控通过使当前病理生理学的血液和血管成分的系统解剖成为可能,为研究微血管疾病提供了独特的机会。我们回顾了微血管器件的最新进展,以及众多微血管疾病和紧迫的挑战。工程界有机会通过新型微血管器件进行创新,并与生物医学研究人员合作,开创微血管疾病理解和发现的新时代。