Suppr超能文献

从材料角度看血液的生物物理学和力学

The biophysics and mechanics of blood from a materials perspective.

作者信息

Qiu Yongzhi, Myers David R, Lam Wilbur A

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.

Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.

出版信息

Nat Rev Mater. 2019 May;4(5):294-311. doi: 10.1038/s41578-019-0099-y. Epub 2019 Mar 28.

Abstract

Cells actively interact with their microenvironment, constantly sensing and modulating biochemical and biophysical signals. Blood comprises a variety of non-adherent cells that interact with each other and with endothelial and vascular smooth muscle cells of the blood vessel walls. Blood cells are further experiencing a range of external forces by the hemodynamic environment and they also exert forces to remodel their local environment. Therefore, the biophysics and material properties of blood cells and blood play an important role in determining blood behaviour in health and disease. In this Review, we discuss blood cells and tissues from a materials perspective, considering the mechanical properties and biophysics of individual blood cells and endothelial cells as well as blood cell collectives. We highlight how blood vessels provide a mechanosensitive barrier between blood and tissues and how changes in vessel stiffness and flow shear stress can be correlated to plaque formation and exploited for the design of vascular grafts. We discuss the effect of the properties of fibrin on blood clotting, and investigate how forces exerted by platelets are correlated to disease. Finally, we hypothesize that blood and vascular cells are constantly establishing a mechanical homeostasis, which, when imbalanced, can lead to hematologic and vascular diseases.

摘要

细胞与它们的微环境积极相互作用,不断感知和调节生化及生物物理信号。血液包含多种非黏附细胞,这些细胞彼此之间以及与血管壁的内皮细胞和血管平滑肌细胞相互作用。血细胞还受到血流动力学环境产生的一系列外力作用,并且它们也施加力来重塑其局部环境。因此,血细胞和血液的生物物理学及材料特性在决定健康和疾病状态下的血液行为方面起着重要作用。在本综述中,我们从材料角度讨论血细胞和组织,考虑单个血细胞、内皮细胞以及血细胞聚集体的力学特性和生物物理学。我们强调血管如何在血液和组织之间提供一个机械敏感屏障,以及血管硬度和流动切应力的变化如何与斑块形成相关联,并可用于血管移植物的设计。我们讨论纤维蛋白特性对血液凝固的影响,并研究血小板施加的力如何与疾病相关。最后,我们推测血液和血管细胞不断建立一种机械稳态,当这种稳态失衡时,可能导致血液学和血管疾病。

相似文献

1
The biophysics and mechanics of blood from a materials perspective.
Nat Rev Mater. 2019 May;4(5):294-311. doi: 10.1038/s41578-019-0099-y. Epub 2019 Mar 28.
3
Vascular Endothelial Cell Behavior in Complex Mechanical Microenvironments.
ACS Biomater Sci Eng. 2018 Nov 12;4(11):3818-3842. doi: 10.1021/acsbiomaterials.8b00628. Epub 2018 Nov 1.
4
Feeling the Force: Measurements of Platelet Contraction and Their Diagnostic Implications.
Semin Thromb Hemost. 2019 Apr;45(3):285-296. doi: 10.1055/s-0038-1676315. Epub 2018 Dec 19.
5
Exogenous and endogenous force regulation of endothelial cell behavior.
J Biomech. 2010 Jan 5;43(1):79-86. doi: 10.1016/j.jbiomech.2009.09.012. Epub 2009 Oct 7.
6
The Importance of Mechanical Forces for Endothelial Cell Biology.
Front Physiol. 2020 Jun 18;11:684. doi: 10.3389/fphys.2020.00684. eCollection 2020.
7
Platelet Mechanotransduction.
Annu Rev Biomed Eng. 2018 Jun 4;20:253-275. doi: 10.1146/annurev-bioeng-062117-121215.
9
A biophysical view of the interplay between mechanical forces and signaling pathways during transendothelial cell migration.
FEBS J. 2010 Mar;277(5):1145-58. doi: 10.1111/j.1742-4658.2009.07545.x. Epub 2010 Jan 27.
10
The fundamental role of mechanical properties in the progression of cancer disease and inflammation.
Rep Prog Phys. 2014 Jul;77(7):076602. doi: 10.1088/0034-4885/77/7/076602. Epub 2014 Jul 9.

引用本文的文献

1
3D Printed Transwell Microfluidic Devices for Epithelial Cell Culture with Shear Stress.
ACS Meas Sci Au. 2025 Jun 3;5(4):547-558. doi: 10.1021/acsmeasuresciau.5c00045. eCollection 2025 Aug 20.
2
Mechanically Active Supramolecular Systems.
Small Sci. 2024 Mar 19;4(5):2300300. doi: 10.1002/smsc.202300300. eCollection 2024 May.
3
Infrared nanosensors of piconewton to micronewton forces.
Nature. 2025 Jan;637(8044):70-75. doi: 10.1038/s41586-024-08221-2. Epub 2025 Jan 1.
4
Magnetic soft microrobots for erectile dysfunction therapy.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2407809121. doi: 10.1073/pnas.2407809121. Epub 2024 Nov 18.
5
Harnessing the power of bioprinting for the development of next-generation models of thrombosis.
Bioact Mater. 2024 Sep 5;42:328-344. doi: 10.1016/j.bioactmat.2024.08.040. eCollection 2024 Dec.
6
Single-pericyte nanomechanics measured by contraction cytometry.
APL Bioeng. 2024 Aug 9;8(3):036109. doi: 10.1063/5.0213761. eCollection 2024 Sep.
7
A brain metastasis liquid biopsy: Where are we now?
Neurooncol Adv. 2024 May 2;6(1):vdae066. doi: 10.1093/noajnl/vdae066. eCollection 2024 Jan-Dec.
8
Laser speckle rheological microscopy reveals wideband viscoelastic spectra of biological tissues.
Sci Adv. 2024 May 10;10(19):eadl1586. doi: 10.1126/sciadv.adl1586. Epub 2024 May 8.
9
Biofabrication of engineered blood vessels for biomedical applications.
Sci Technol Adv Mater. 2024 Mar 21;25(1):2330339. doi: 10.1080/14686996.2024.2330339. eCollection 2024.
10
Recent Developments in Layer-by-Layer Assembly for Drug Delivery and Tissue Engineering Applications.
Adv Healthc Mater. 2024 Mar;13(8):e2302713. doi: 10.1002/adhm.202302713. Epub 2024 Jan 7.

本文引用的文献

1
Reduced Contraction of Blood Clots in Venous Thromboembolism Is a Potential Thrombogenic and Embologenic Mechanism.
TH Open. 2018 Mar 28;2(1):e104-e115. doi: 10.1055/s-0038-1635572. eCollection 2018 Jan.
2
Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface.
Arterioscler Thromb Vasc Biol. 2019 Jan;39(1):37-47. doi: 10.1161/ATVBAHA.118.311390.
4
Mechanical forces on cellular organelles.
J Cell Sci. 2018 Oct 29;131(21):jcs218479. doi: 10.1242/jcs.218479.
5
Regulatory element in fibrin triggers tension-activated transition from catch to slip bonds.
Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):8575-8580. doi: 10.1073/pnas.1802576115. Epub 2018 Aug 7.
6
Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude.
Nat Commun. 2018 Jul 11;9(1):2684. doi: 10.1038/s41467-018-05079-7.
7
A comparison of methods to assess cell mechanical properties.
Nat Methods. 2018 Jul;15(7):491-498. doi: 10.1038/s41592-018-0015-1. Epub 2018 Jun 18.
8
A fibrin biofilm covers blood clots and protects from microbial invasion.
J Clin Invest. 2018 Aug 1;128(8):3356-3368. doi: 10.1172/JCI98734. Epub 2018 Jun 25.
9
GPR68 Senses Flow and Is Essential for Vascular Physiology.
Cell. 2018 Apr 19;173(3):762-775.e16. doi: 10.1016/j.cell.2018.03.076.
10
Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability.
Proc Natl Acad Sci U S A. 2018 May 8;115(19):E4377-E4385. doi: 10.1073/pnas.1718285115. Epub 2018 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验