Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
Genes Genomics. 2021 Jul;43(7):737-748. doi: 10.1007/s13258-021-01091-2. Epub 2021 Apr 17.
Haploinsufficiency of the human nuclear receptor binding suppressor of variegation 3-9, enhancer of zeste, and trithorax (SET) domain 1 (NSD1) gene causes a developmental disorder called Sotos syndrome 1 (SOTOS1), which is associated with overgrowth and macrocephaly. NSD family proteins encoding histone H3 lysine 36 (H3K36) methyltransferases are conserved in many species, and Drosophila has a single NSD homolog gene, NSD.
To gain insight into the biological functions of NSD1 deficiency in the developmental anomalies seen in SOTOS1 patients using an NSD-deleted Drosophila mutant.
We deleted Drosophila NSD using CRISPR/Cas9-mediated targeted gene knock-out, and analyzed pleiotropic phenotypes of the homozygous mutant of NSD (NSD) at various developmental stages to understand the roles of NSD in Drosophila.
The site-specific NSD deletion was confirmed in the mutant. The H3K36 di-methylation levels were dramatically decreased in the NSD fly. Compared with the control, the NSD fly displayed an increase in the body size of larvae, similar to the childhood overgrowth phenotype of SOTOS1 patients. Although the NSD mutant flies survived to adulthood, their fecundity was dramatically decreased. Furthermore, the NSD fly showed neurological dysfunctions, such as lower memory performance and motor defects, and a diminished extracellular signal-regulated kinase (ERK) activity.
The NSD-deleted Drosophila phenotype resembles many of the phenotypes of SOTOS1 patients, such as learning disability, deregulated ERK signaling, and overgrowth; thus, this mutant fly is a relevant model organism to study various SOTOS1 phenotypes.
人类核受体结合抑制因子、增强子的杂色抑制物 3-9、增强子的 zeste 和 trithorax(SET)结构域 1(NSD1)基因的单倍不足会导致一种称为 Sotos 综合征 1(SOTOS1)的发育障碍,其与过度生长和大头有关。编码组蛋白 H3 赖氨酸 36(H3K36)甲基转移酶的 NSD 家族蛋白在许多物种中是保守的,果蝇有一个单一的 NSD 同源基因 NSD。
利用 NSD 缺失的果蝇突变体,深入了解 SOTOS1 患者发育异常中 NSD1 缺陷的生物学功能。
我们使用 CRISPR/Cas9 介导的靶向基因敲除删除果蝇 NSD,分析 NSD 纯合突变体在不同发育阶段的多种表型,以了解 NSD 在果蝇中的作用。
在突变体中证实了 NSD 的特异性缺失。NSD 果蝇中的 H3K36 二甲基化水平显著降低。与对照组相比,NSD 果蝇幼虫的体型增大,类似于 SOTOS1 患者的儿童过度生长表型。尽管 NSD 突变果蝇存活到成年,但它们的繁殖力显著下降。此外,NSD 果蝇表现出神经功能障碍,如记忆性能下降和运动缺陷,以及细胞外信号调节激酶(ERK)活性降低。
NSD 缺失的果蝇表型类似于 SOTOS1 患者的许多表型,如学习障碍、ERK 信号失调和过度生长;因此,这种突变果蝇是研究各种 SOTOS1 表型的相关模式生物。