Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India.
Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India.
Rev Environ Contam Toxicol. 2021;256:155-177. doi: 10.1007/398_2020_61.
Heavy metal (HM) contamination is a serious global environmental crisis. Over the past decade, industrial effluents, modern agricultural practices, and other anthropogenic activities have significantly depleted the soil environment. In plants, metal toxicity leads to compromised growth, development, productivity, and yield. Also, HMs negatively affect human health due to food chain contamination. Thus, it is imperative to reduce metal accumulation and toxicity. In nature, certain plant species exhibit an inherent capacity of amassing large amounts of HMs with remarkable tolerance. These plants with unique characteristics can be employed for the remediation of contaminated soil and water. Among different plant species, Sorghum bicolor has the potential of accumulating huge amounts of HMs, thus could be regarded as a hyperaccumulator. This means that it is a metal tolerant, high biomass producing energy crop, and thus can be utilized for phytoremediation. However, high concentrations of HMs hamper plant height, root hair density, shoot biomass, number of leaves, chlorophyll, carotenoid, and carbohydrate content. Thus, understanding the response of Sorghum towards different HMs holds considerable importance. Considering this, we have uncovered the basic information about the metal uptake, translocation, and accumulation in Sorghum. Plants respond to different HMs via sensing, signaling, and modulations in physico-chemical processes. Therefore, in this review, a glimpse of HM toxicity and the response of Sorghum at the morphological, physiological, biochemical, and molecular levels has been provided. The review highlights the future research needs and emphasizes the extensive molecular dissection of Sorghum to explore its genetic adaptability towards different abiotic stresses that can be exploited to develop resilient crop varieties.
重金属(HM)污染是一个严重的全球性环境危机。在过去的十年中,工业废水、现代农业实践和其他人为活动极大地破坏了土壤环境。在植物中,金属毒性会导致生长、发育、生产力和产量受损。此外,由于食物链污染,HM 对人类健康也有负面影响。因此,减少金属积累和毒性至关重要。在自然界中,某些植物物种具有大量积累 HM 的固有能力,同时具有显著的耐受性。这些具有独特特性的植物可用于污染土壤和水的修复。在不同的植物物种中,高粱具有积累大量 HM 的潜力,因此可以被视为超积累植物。这意味着它是一种耐金属、高生物质生产的能源作物,因此可用于植物修复。然而,高浓度的 HM 会阻碍植物的高度、根毛密度、地上部生物量、叶片数量、叶绿素、类胡萝卜素和碳水化合物含量。因此,了解高粱对不同 HM 的反应具有相当重要的意义。考虑到这一点,我们已经揭示了高粱对金属吸收、转运和积累的基本信息。植物通过感应、信号传递以及物理化学过程的调节来应对不同的 HM。因此,在这篇综述中,我们提供了 HM 毒性以及高粱在形态、生理、生化和分子水平上的反应的概述。该综述强调了未来的研究需求,并强调了对高粱的广泛分子剖析,以探索其对不同非生物胁迫的遗传适应性,这可以被用来开发有弹性的作物品种。