Suppr超能文献

基于药效团和分子对接的 SARS-CoV-2 主要蛋白酶(Mpro)抑制剂药物发现,该蛋白酶是 COVID-19 的致病因子。

In-silico pharmacophoric and molecular docking-based drug discovery against the Main Protease (Mpro) of SARS-CoV-2, a causative agent COVID-19.

机构信息

Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad (UAF), Faisalabad, Pakistan.

Fauji Fertilizer Company Limited, Pakistan.

出版信息

Pak J Pharm Sci. 2020 Nov;33(6):2697-2705.

Abstract

COVID-19 (Coronavirus Disease 2019) caused by a novel 'SARS-CoV-2' virus resulted in public health emergencies across the world. An effective vaccine to cure this virus is not yet available, thus requires concerted efforts at various scales. In this study, we employed Computer-Aided Drug Design (CADD) based approach to identify the drug-like compounds - inhibiting the replication of the main protease (M) of SARS-CoV-2. Our database search using an online tool "ZINC pharmer" retrieved ~1500 compounds based on pharmacophore features. Lipinski's rule was applied to further evaluate the drug-like compounds, followed by molecular docking-based screening, and the selection of screening ligand complex with M based on S-score (higher than reference inhibitor) and root-mean-square deviation (RMSD) value (less than reference inhibitor) using AutoDock 4.2. Resultantly, ~200 compounds were identified having strong interaction with M of SARS-CoV-2. After evaluating their binding energy using the AutoDock 4.2 software, three compounds (ZINC20291569, ZINC90403206, ZINC95480156) were identified that showed highest binding energy with M of SARS-CoV-2 and strong inhibition effect than the N3 (reference inhibitor). A good binding energy, drug likeness and effective pharmacokinetic parameters suggest that these candidates have greater potential to stop the replication of SARS-CoV-2, hence might lead to the cure of COVID-19.

摘要

由新型“SARS-CoV-2”病毒引起的 COVID-19(2019 年冠状病毒病)在全球范围内引发了公共卫生紧急事件。目前还没有治愈这种病毒的有效疫苗,因此需要在各个层面上共同努力。在这项研究中,我们采用计算机辅助药物设计(CADD)方法来识别抑制 SARS-CoV-2 主要蛋白酶(M)复制的类药化合物。我们使用在线工具“ZINC pharmer”进行数据库搜索,根据药效团特征检索到了约 1500 种化合物。然后应用 Lipinski 规则进一步评估类药化合物,接着进行基于分子对接的筛选,并根据 S-得分(高于参考抑制剂)和均方根偏差(RMSD)值(低于参考抑制剂)选择与 M 结合的筛选配体复合物,使用 AutoDock 4.2。结果,确定了约 200 种与 SARS-CoV-2 的 M 具有强烈相互作用的化合物。使用 AutoDock 4.2 软件评估它们的结合能后,鉴定出三种化合物(ZINC20291569、ZINC90403206、ZINC95480156)与 SARS-CoV-2 的 M 具有最高的结合能,并且比 N3(参考抑制剂)具有更强的抑制作用。良好的结合能、类药性和有效的药代动力学参数表明,这些候选物具有更大的潜力来阻止 SARS-CoV-2 的复制,从而可能导致 COVID-19 的治愈。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验