Suppr超能文献

靶向 SARS-CoV-2 主蛋白酶:一项计算药物再利用研究。

Targeting SARS-CoV-2 Main Protease: A Computational Drug Repurposing Study.

机构信息

Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.

Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.

出版信息

Arch Med Res. 2021 Jan;52(1):38-47. doi: 10.1016/j.arcmed.2020.09.013. Epub 2020 Sep 17.

Abstract

BACKGROUND AND AIMS

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) induced Novel Coronavirus Disease (COVID-19) has currently become pandemic worldwide. Though drugs like remdesivir, favipiravir, and dexamethasone found beneficial for COVID-19 management, they have limitations clinically, and vaccine development takes a long time. The researchers have reported key proteins which could act as druggable targets. Among them, the major protease M is first published, plays a prominent role in viral replication and an attractive drug-target for drug discovery. Hence, to target M and inhibit it, we accomplished the virtual screening of US-FDA approved drugs using well-known drug repurposing approach by computer-aided tools.

METHODS

The protein M, PDB-ID 6LU7 was imported to Maestro graphical user interphase of Schrödinger software. The US-FDA approved drug structures are imported from DrugBank and docked after preliminary protein and ligand preparation. The drugs are shortlisted based on the docking scores in the Standard Precision method (SP-docking) and then based on the type of molecular interactions they are studied for molecular dynamics simulations.

RESULTS

The docking and molecular interactions studies, five drugs emerged as potential hits by forming hydrophilic, hydrophobic, electrostatic interactions. The drugs such as arbutin, terbutaline, barnidipine, tipiracil and aprepitant identified as potential hits. Among the drugs, tipiracil and aprepitant interacted with the M consistently, and they turned out to be most promising.

CONCLUSIONS

This study shows the possible exploration for drug repurposing using computer-aided docking tools and the potential roles of tipiracil and aprepitant, which can be explored further in the treatment of COVID-19.

摘要

背景与目的

严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)引起的新型冠状病毒病(COVID-19)目前已在全球范围内流行。虽然瑞德西韦、法匹拉韦和地塞米松等药物已被证明对 COVID-19 的治疗有益,但它们在临床上存在局限性,疫苗的开发需要很长时间。研究人员已经报道了一些关键蛋白,这些蛋白可以作为潜在的药物靶点。其中,主要蛋白酶 M 是首次发表的,在病毒复制中起重要作用,是药物发现的有吸引力的药物靶点。因此,为了针对 M 并抑制它,我们使用计算机辅助工具的知名药物再利用方法完成了美国食品和药物管理局批准的药物的虚拟筛选。

方法

将蛋白 M(PDB-ID 6LU7)导入 Schrödinger 软件的 Maestro 图形用户界面。从 DrugBank 中导入美国食品和药物管理局批准的药物结构,并在初步的蛋白和配体准备后进行对接。根据标准精度方法(SP-docking)中的对接分数对药物进行初步筛选,然后根据它们形成的分子相互作用的类型对它们进行分子动力学模拟研究。

结果

对接和分子相互作用研究表明,有 5 种药物通过形成亲水、疏水和静电相互作用成为潜在的药物。确定了熊果苷、特布他林、巴尼地平、替吡嘧啶和阿瑞匹坦等药物为潜在的药物。在这些药物中,替吡嘧啶和阿瑞匹坦与 M 持续相互作用,它们是最有前途的药物。

结论

这项研究表明,使用计算机辅助对接工具对药物再利用进行可能的探索,以及替吡嘧啶和阿瑞匹坦的潜在作用,可以进一步探索它们在 COVID-19 治疗中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c01/7498210/ba5d1e124892/fx1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验