Department of Computer Science, University of California, Los Angeles.
Department of Emergency Medicine.
AIDS. 2021 May 1;35(Suppl 1):S85-S89. doi: 10.1097/QAD.0000000000002841.
Community popular opinion leaders have played a critical role in HIV prevention interventions. However, it is often difficult to identify these 'HIV influencers' who are qualified and willing to promote HIV campaigns, especially online, because social media influencers change frequently. We sought to use an iterative deep learning framework to automatically discover HIV-related online social influencers.
Out of 1.15 million Twitter users' data from March 2018 to March 2020, we extracted tweets from 1099 Twitter users who had mentioned the keywords 'HIV' or 'AIDS'. Two Twitter users determined to be 'online HIV influencers' based on their conversation topics and engagement were hand-picked by domain experts and used as a seed training dataset. We modelled social influence and discovered new potential influencers based on these seeds using a graph neural network model. We tested the model's precision and recall compared with other baseline model approaches. We validated the results through manual verification.
The model identified 23 new (manually verified) HIV-related influencers, including health and research organizations and local HIV advocates across the United States. Our proposed model achieved the highest accuracy/recall, with an average improvement of 38.5% over the other baseline models.
Results suggest that iterative deep learning models can be used to automatically identify new and changing key HIV-related influencers online. We discuss the implications and potential of HIV researchers/departments applying this approach across online big data (e.g. hundreds of millions of social media posts per day) to help promote HIV prevention campaigns to affected communities.
社区意见领袖在艾滋病预防干预中发挥了关键作用。然而,由于社交媒体意见领袖经常变化,因此通常难以识别有资格且愿意在线宣传艾滋病活动的这些“艾滋病影响者”。我们试图使用迭代式深度学习框架自动发现与艾滋病相关的在线社交影响者。
我们从 2018 年 3 月至 2020 年 3 月的 115 万 Twitter 用户数据中提取了 1099 名提到过“HIV”或“AIDS”关键词的 Twitter 用户的推文。两位根据其对话主题和参与度被确定为“在线艾滋病影响者”的 Twitter 用户由领域专家手工挑选出来,并作为种子培训数据集使用。我们基于这些种子使用图神经网络模型模拟社交影响力并发现新的潜在影响者。我们测试了该模型与其他基线模型方法相比的精度和召回率。我们通过手动验证验证了结果。
该模型确定了 23 名新的(经手动验证)与艾滋病相关的影响者,包括美国各地的健康和研究组织以及当地的艾滋病倡导者。我们提出的模型取得了最高的准确率/召回率,与其他基线模型相比平均提高了 38.5%。
结果表明,迭代式深度学习模型可用于自动识别在线新的和不断变化的关键艾滋病相关影响者。我们讨论了艾滋病研究人员/部门在应用此方法在线分析大数据(例如每天有数亿社交媒体帖子)以帮助向受影响社区推广艾滋病预防活动方面的意义和潜力。