Suppr超能文献

精确线性化误差传输方程在声爆预测研讨会上的应用。

Application of Exactly Linearized Error Transport Equations to Sonic Boom Prediction Workshop.

作者信息

Derlaga Joseph M, Park Michael A, Rallabhandi Sriram K

机构信息

NASA Langley Research Center, Hampton, Virginia, 23681.

出版信息

J Aircr. 2019 May;56(3):953-961. doi: 10.2514/1.C034841. Epub 2019 Mar 19.

Abstract

The computational fluid dynamics (CFD) prediction workshops sponsored by the AIAA have created invaluable opportunities to discuss the predictive capabilities of CFD in areas in which it has struggled, e.g., sonic boom prediction. While there are many factors that contribute to disagreement between simulated and experimental results, such as modeling or discretization errors, quantifying the errors contained in a simulation is important for those who make decisions based on the computational results. The linearized error transport equations (ETE) combined with a truncation error estimate is a method to quantify one source of error. The ETE are implemented with a complex-step method to provide an exact linearization with minimal source code modifications to CFD and multidisciplinary analysis methods including atmospheric propagation of sonic boom signatures. Uniformly refined grids from the 2nd AIAA Sonic Boom Prediction Workshop demonstrate the utility of ETE for multidisciplinary analysis with a connection between estimated discretization error and (resolved or under-resolved) flow features.

摘要

由美国航空航天学会(AIAA)主办的计算流体动力学(CFD)预测研讨会创造了非常宝贵的机会,来讨论CFD在其面临困难的领域中的预测能力,例如声爆预测。虽然有许多因素导致模拟结果与实验结果存在差异,如建模或离散化误差,但对于那些基于计算结果做出决策的人来说,量化模拟中包含的误差很重要。线性化误差传输方程(ETE)与截断误差估计相结合是一种量化误差来源的方法。ETE通过复步法实现,以在对CFD和多学科分析方法(包括声爆信号的大气传播)进行最小源代码修改的情况下提供精确的线性化。来自第二届AIAA声爆预测研讨会的均匀细化网格展示了ETE在多学科分析中的效用,以及估计离散化误差与(已解析或未充分解析的)流动特征之间的联系。

相似文献

3
State of the art of sonic boom modeling.音爆建模的技术现状。
J Acoust Soc Am. 2002 Jan;111(1 Pt 2):530-6. doi: 10.1121/1.1379075.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验