Suppr超能文献

Dynamic shrinkage in time-varying parameter stochastic volatility in mean models.

作者信息

Huber Florian, Pfarrhofer Michael

机构信息

Department of Economics Salzburg Centre of European Union Studies University of Salzburg Mönchsberg 2A Salzburg 5020 Austria.

出版信息

J Appl Econ (Chichester Engl). 2021 Mar;36(2):262-270. doi: 10.1002/jae.2804. Epub 2021 Jan 6.

Abstract

Successful forecasting models strike a balance between parsimony and flexibility. This is often achieved by employing suitable shrinkage priors that penalize model complexity but also reward model fit. In this article, we modify the stochastic volatility in mean (SVM) model by introducing state-of-the-art shrinkage techniques that allow for time variation in the degree of shrinkage. Using a real-time inflation forecast exercise, we show that employing more flexible prior distributions on several key parameters sometimes improves forecast performance for the United States, the United Kingdom, and the euro area (EA). Comparing in-sample results reveals that our proposed model yields qualitatively similar insights to the original version of the model.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/670b/8048439/1ad184484b8b/JAE-36-262-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验