Suppr超能文献

利用长度测量的线性组合和传感器布置优化改进连续体关节配置估计

Improved Continuum Joint Configuration Estimation Using a Linear Combination of Length Measurements and Optimization of Sensor Placement.

作者信息

Rupert Levi, Duggan Timothy, Killpack Marc D

机构信息

Robotics and Dynamics Lab, Department of Mechanical Engineering, Brigham Young University, Provo, UT, United States.

Otherlab Inc., San Francisco, CA, United States.

出版信息

Front Robot AI. 2021 Apr 1;8:637301. doi: 10.3389/frobt.2021.637301. eCollection 2021.

Abstract

This paper presents methods for placing length sensors on a soft continuum robot joint as well as a novel configuration estimation method that drastically minimizes configuration estimation error. The methods utilized for placing sensors along the length of the joint include a single joint length sensor, sensors lined end-to-end, sensors that overlap according to a heuristic, and sensors that are placed by an optimization that we describe in this paper. The methods of configuration estimation include directly relating sensor length to a segment of the joint's angle, using an equal weighting of overlapping sensors that cover a joint segment, and using a weighted linear combination of all sensors on the continuum joint. The weights for the linear combination method are determined using robust linear regression. Using a kinematic simulation we show that placing three or more overlapping sensors and estimating the configuration with a linear combination of sensors resulted in a median error of 0.026% of the max range of motion or less. This is over a 500 times improvement as compared to using a single sensor to estimate the joint configuration. This error was computed across 80 simulated robots of different lengths and ranges of motion. We also found that the fully optimized sensor placement performed only marginally better than the placement of sensors according to the heuristic. This suggests that the use of a linear combination of sensors, with weights found using linear regression is more important than the placement of the overlapping sensors. Further, using the heuristic significantly simplifies the application of these techniques when designing for hardware.

摘要

本文介绍了在软连续体机器人关节上放置长度传感器的方法,以及一种能大幅降低构型估计误差的新型构型估计方法。沿关节长度放置传感器所采用的方法包括单个关节长度传感器、端对端排列的传感器、根据启发式方法重叠放置的传感器,以及通过本文所述优化方法放置的传感器。构型估计方法包括将传感器长度直接与关节角度的某一段相关联、对覆盖关节段的重叠传感器使用相等权重,以及对连续体关节上的所有传感器使用加权线性组合。线性组合方法的权重通过稳健线性回归确定。通过运动学仿真,我们表明放置三个或更多重叠传感器并使用传感器的线性组合估计构型,导致的中位误差为最大运动范围的0.026%或更小。与使用单个传感器估计关节构型相比,这有超过500倍的改进。该误差是在80个不同长度和运动范围的模拟机器人上计算得出的。我们还发现,完全优化的传感器放置仅比根据启发式方法放置传感器略好。这表明使用通过线性回归找到权重的传感器线性组合比重叠传感器的放置更重要。此外,在进行硬件设计时,使用启发式方法可显著简化这些技术的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/052f/8047114/62b0f8fd42f0/frobt-08-637301-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验