Senis Yotis A, Nagy Zoltan, Mori Jun, Lane Sophia, Lane Patrick
Unité Mixte de Recherche-S 1255 Fédération de Médecine Translationnelle de Strasbourg Université de Strasbourg Institut National de la Santé et de la Recherche Médicale Etablissement Français du Sang Grand Est Strasbourg France.
Institute of Experimental Biomedicine University Hospital and Rudolf Virchow Center University of Würzburg Würzburg Germany.
Res Pract Thromb Haemost. 2021 Mar 26;5(3):376-389. doi: 10.1002/rth2.12495. eCollection 2021 Mar.
Sarcoma (Src) family kinases (SFKs) have occupied a central place in platelet research for over 40 years. Discovered by virologists and oncologists as the proto , Src tyrosine kinase spurred a phenomenal burst of research on reversible tyrosine phosphorylation and signal transduction. For a time, platelets were adopted as the model of choice for studying the biological functions of Src, owing to their ease of isolation, high Src expression, and lack of a nucleus, only to be abandoned due to challenges of culturing and manipulating using common molecular biology-based techniques. For platelet biologists, SFKs have remained an important area of investigation, initiating and amplifying signals from all major adhesion, activation, and inhibitory receptors, including the integrin αIIbβ3, the collagen receptor complex glycoprotein VI-Fc receptor γ-chain, the G protein-coupled ADP receptor P2Y and the inhibitory receptors platelet endothelial cell adhesion molecule-1 and G6b-B. The vital roles of SFKs in platelets is highlighted by the severe phenotypes of and mutations in SFKs in mice and humans, and effects of pharmacologic inhibitors on platelet activation, thrombosis, and hemostasis. The recent description of critical regulators of SFKs in platelets, namely, C-terminal Src kinase (Csk), Csk homologous kinase (Chk), the receptor-type protein-tyrosine phosphatase receptor type J (PTPRJ) helps explain some of the bleeding side effects of tyrosine kinase inhibitors and are novel therapeutic targets for regulating the thrombotic and hemostatic capacity of platelets. Recent findings from Chk, Csk, and PTPRJ knockout mouse models highlighted that SFKs are able to autoinhibit by phosphorylating their C-terminal tyrosine residues, providing fundamental insights into SFK autoregulation.
肉瘤(Src)家族激酶(SFKs)在血小板研究领域占据核心地位已有40多年。病毒学家和肿瘤学家发现Src酪氨酸激酶作为原癌基因,引发了对可逆酪氨酸磷酸化和信号转导的大量研究。有一段时间,血小板因其易于分离、Src表达高且无细胞核,被用作研究Src生物学功能的首选模型,但由于使用基于普通分子生物学技术进行培养和操作存在挑战,最终被放弃。对于血小板生物学家来说,SFKs仍然是一个重要的研究领域,它启动并放大来自所有主要黏附、激活和抑制受体的信号,包括整合素αIIbβ3、胶原受体复合物糖蛋白VI - Fc受体γ链、G蛋白偶联ADP受体P2Y以及抑制性受体血小板内皮细胞黏附分子 - 1和G6b - B。小鼠和人类中SFKs突变的严重表型以及药理抑制剂对血小板激活、血栓形成和止血的影响,突出了SFKs在血小板中的重要作用。最近对血小板中SFKs关键调节因子的描述,即C末端Src激酶(Csk)、Csk同源激酶(Chk)、受体型蛋白酪氨酸磷酸酶J型(PTPRJ),有助于解释酪氨酸激酶抑制剂的一些出血副作用,并且是调节血小板血栓形成和止血能力的新型治疗靶点。Chk、Csk和PTPRJ基因敲除小鼠模型的最新研究结果表明,SFKs能够通过磷酸化其C末端酪氨酸残基进行自我抑制,为SFK的自我调节提供了基本见解。