Suppr超能文献

近似同态加密的一种完整RNS变体。

A Full RNS Variant of Approximate Homomorphic Encryption.

作者信息

Cheon Jung Hee, Han Kyoohyung, Kim Andrey, Kim Miran, Song Yongsoo

机构信息

Seoul National University, Seoul, Republic of Korea.

University of Texas, Houston, United States.

出版信息

Sel Areas Cryptogr. 2018;11349:347-368. doi: 10.1007/978-3-030-10970-7_16. Epub 2019 Jan 13.

Abstract

The technology of homomorphic encryption has improved rapidly in a few years. The cutting edge implementations are efficient enough to use in practical applications. Recently, Cheon et al. (ASI-ACRYPT'17) proposed a homomorphic encryption scheme which supports an arithmetic of approximate numbers over encryption. This scheme shows the current best performance in computation over the real numbers, but its implementation could not employ core optimization techniques based on the Residue Number System (RNS) decomposition and the Number Theoretic Transformation (NTT). In this paper, we present a variant of approximate homomorphic encryption which is optimal for implementation on standard computer system. We first introduce a new structure of ciphertext modulus which allows us to use both the RNS decomposition of cyclotomic polynomials and the NTT conversion on each of the RNS components. We also suggest new approximate modulus switching procedures without any RNS composition. Compared to previous exact algorithms requiring multi-precision arithmetic, our algorithms can be performed by using only word size (64-bit) operations. Our scheme achieves a significant performance gain from its full RNS implementation. For example, compared to the earlier implementation, our implementation showed speed-ups 17.3, 6.4, and 8.3 times for decryption, constant multiplication, and homomorphic multiplication, respectively, when the dimension of a cyclotomic ring is 32768. We also give experimental result for evaluations of some advanced circuits used in machine learning or statistical analysis. Finally, we demonstrate the practicability of our library by applying to machine learning algorithm. For example, our single core implementation takes 1.8 minutes to build a logistic regression model from encrypted data when the dataset consists of 575 samples, compared to the previous best result 3.5 minutes using four cores.

摘要

同态加密技术在几年内取得了快速进展。前沿实现的效率足以用于实际应用。最近,Cheon等人(ASI-ACRYPT'17)提出了一种同态加密方案,该方案支持对加密后的近似数进行算术运算。该方案在实数计算方面展现了当前最佳性能,但其实现无法采用基于剩余数系统(RNS)分解和数论变换(NTT)的核心优化技术。在本文中,我们提出了一种近似同态加密的变体,它在标准计算机系统上实现时是最优的。我们首先引入了一种新的密文模数结构,这使我们能够同时使用分圆多项式的RNS分解以及对每个RNS组件进行NTT转换。我们还提出了无需任何RNS合成的新的近似模数切换过程。与之前需要多精度算术的精确算法相比,我们的算法仅通过字长(64位)运算即可执行。我们的方案通过其完整的RNS实现获得了显著的性能提升。例如,当分圆环的维度为三万二千七百六十八时,与早期实现相比,我们的实现在解密、常数乘法和同态乘法方面分别提速了17.3倍、6.4倍和8.3倍。我们还给出了对机器学习或统计分析中使用的一些先进电路进行评估的实验结果。最后,我们通过将其应用于机器学习算法来证明我们库的实用性。例如,当数据集由575个样本组成时,我们的单核实现从加密数据构建逻辑回归模型需要1.8分钟,而之前的最佳结果使用四个核心则需要3.5分钟。

相似文献

1
A Full RNS Variant of Approximate Homomorphic Encryption.近似同态加密的一种完整RNS变体。
Sel Areas Cryptogr. 2018;11349:347-368. doi: 10.1007/978-3-030-10970-7_16. Epub 2019 Jan 13.

引用本文的文献

1
DARTPHROG: A Superscalar Homomorphic Accelerator.DARTPHROG:一种超标量同态加速器。
Sensors (Basel). 2025 Aug 20;25(16):5176. doi: 10.3390/s25165176.
10
Semi-Parallel logistic regression for GWAS on encrypted data.基于加密数据的 GWAS 的半平行逻辑回归。
BMC Med Genomics. 2020 Jul 21;13(Suppl 7):99. doi: 10.1186/s12920-020-0724-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验