Hamza Rafik, Hassan Alzubair, Ali Awad, Bashir Mohammed Bakri, Alqhtani Samar M, Tawfeeg Tawfeeg Mohmmed, Yousif Adil
Institute for International Strategy, Tokyo International University, Saitama 350-1197, Japan.
National Institute of Information and Communications Technology, Tokyo 184-8795, Japan.
Entropy (Basel). 2022 Apr 6;24(4):519. doi: 10.3390/e24040519.
Privacy-preserving techniques allow private information to be used without compromising privacy. Most encryption algorithms, such as the Advanced Encryption Standard (AES) algorithm, cannot perform computational operations on encrypted data without first applying the decryption process. Homomorphic encryption algorithms provide innovative solutions to support computations on encrypted data while preserving the content of private information. However, these algorithms have some limitations, such as computational cost as well as the need for modifications for each case study. In this paper, we present a comprehensive overview of various homomorphic encryption tools for Big Data analysis and their applications. We also discuss a security framework for Big Data analysis while preserving privacy using homomorphic encryption algorithms. We highlight the fundamental features and tradeoffs that should be considered when choosing the right approach for Big Data applications in practice. We then present a comparison of popular current homomorphic encryption tools with respect to these identified characteristics. We examine the implementation results of various homomorphic encryption toolkits and compare their performances. Finally, we highlight some important issues and research opportunities. We aim to anticipate how homomorphic encryption technology will be useful for secure Big Data processing, especially to improve the utility and performance of privacy-preserving machine learning.
隐私保护技术允许在不损害隐私的情况下使用私人信息。大多数加密算法,如高级加密标准(AES)算法,在不首先应用解密过程的情况下,无法对加密数据执行计算操作。同态加密算法提供了创新的解决方案,以支持对加密数据进行计算,同时保留私人信息的内容。然而,这些算法存在一些局限性,如计算成本以及针对每个案例研究都需要进行修改。在本文中,我们全面概述了用于大数据分析的各种同态加密工具及其应用。我们还讨论了使用同态加密算法在保护隐私的同时进行大数据分析的安全框架。我们强调了在实践中为大数据应用选择正确方法时应考虑的基本特征和权衡。然后,我们针对这些已确定的特征,对当前流行的同态加密工具进行了比较。我们研究了各种同态加密工具包的实现结果,并比较了它们的性能。最后,我们强调了一些重要问题和研究机会。我们旨在预测同态加密技术将如何有助于安全的大数据处理,特别是提高隐私保护机器学习的实用性和性能。