Suppr超能文献

基于全同态加密的联邦人类甲基化数据的隐私保护生物年龄预测。

Privacy-preserving biological age prediction over federated human methylation data using fully homomorphic encryption.

机构信息

Department of Computer Science, The University of Haifa, Haifa 3103301, Israel;

Department of Evolutionary and Environmental Biology, The University of Haifa, Haifa 3103301, Israel

出版信息

Genome Res. 2024 Oct 11;34(9):1324-1333. doi: 10.1101/gr.279071.124.

Abstract

DNA methylation data play a crucial role in estimating chronological age in mammals, offering real-time insights into an individual's aging process. The epigenetic pacemaker (EPM) model allows inference of the biological age as deviations from the population trend. Given the sensitivity of this data, it is essential to safeguard both inputs and outputs of the EPM model. A privacy-preserving approach for EPM computation utilizing fully homomorphic encryption was recently introduced. However, this method has limitations, including having high communication complexity and being impractical for large data sets. The current work presents a new privacy-preserving protocol for EPM computation, analytically improving both privacy and complexity. Notably, we employ a single server for the secure computation phase while ensuring privacy even in the event of server corruption (compared to requiring two noncolluding servers in prior work). Using techniques from symbolic algebra and number theory, the new protocol eliminates the need for communication during secure computation, significantly improves asymptotic runtime, and offers better compatibility to parallel computing for further time complexity reduction. We implemented our protocol, demonstrating its ability to produce results similar to the standard (insecure) EPM model with substantial performance improvement compared to prior work. These findings hold promise for enhancing data security in medical applications where personal privacy is paramount. The generality of both the new approach and the EPM suggests that this protocol may be useful in other applications employing similar expectation-maximization techniques.

摘要

DNA 甲基化数据在估计哺乳动物的年龄中起着至关重要的作用,提供了个体衰老过程的实时洞察。表观遗传时钟(EPM)模型允许根据人群趋势推断生物年龄。考虑到这些数据的敏感性,保护 EPM 模型的输入和输出至关重要。最近提出了一种利用全同态加密的 EPM 计算隐私保护方法。然而,这种方法存在局限性,包括通信复杂度高和不适用于大数据集。目前的工作提出了一种新的 EPM 计算隐私保护协议,在分析上提高了隐私性和复杂性。值得注意的是,我们在安全计算阶段使用单个服务器,即使在服务器被破坏的情况下也能确保隐私(与之前的工作需要两个非勾结的服务器相比)。我们使用符号代数和数论的技术,新协议在安全计算期间消除了通信的需要,大大提高了渐近运行时间,并提供了更好的兼容性,以进一步减少并行计算的时间复杂度。我们实现了我们的协议,展示了它能够产生类似于标准(不安全)EPM 模型的结果,与之前的工作相比,性能有了显著提高。这些发现有望提高医疗应用中个人隐私至关重要的数据安全性。新方法和 EPM 的通用性表明,该协议可能在其他使用类似期望最大化技术的应用中有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09fe/11529865/a85e1697e711/1324f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验