Hong Zijian, Das Sujit, Nelson Christopher, Yadav Ajay, Wu Yongjun, Junquera Javier, Chen Long-Qing, Martin Lane W, Ramesh Ramamoorthy
Laboratory of Dielectric Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, China.
Nano Lett. 2021 Apr 28;21(8):3533-3539. doi: 10.1021/acs.nanolett.1c00404. Epub 2021 Apr 19.
Controlling the domain formation in ferroelectric materials at the nanoscale is a fertile ground to explore emergent phenomena and their technological prospects. For example, charged ferroelectric domain walls in BiFeO and ErMnO exhibit significantly enhanced conductivity which could serve as the foundation for next-generation circuits (Estévez and Laurson, , , 054407). Here, we describe a concept in which polar vortices perform the same role as a ferroelectric domain wall in classical domain structures with the key difference being that the polar vortices can accommodate charged (., head-to-head and tail-to-tail) domains, for example, in ferroelectric PbTiO/dielectric SrTiO superlattices. Such a vortex domain wall structure can be manipulated in a reversible fashion under an external applied field.
在纳米尺度上控制铁电材料中的畴形成是探索新出现的现象及其技术前景的肥沃土壤。例如,BiFeO和ErMnO中的带电铁电畴壁表现出显著增强的导电性,这可为下一代电路奠定基础(埃斯特维兹和劳尔森, , ,054407)。在此,我们描述了一个概念,其中极性涡旋在经典畴结构中发挥着与铁电畴壁相同的作用,关键区别在于极性涡旋可以容纳带电(例如,头对头和尾对尾)畴,例如在铁电PbTiO/介电SrTiO超晶格中。这种涡旋畴壁结构可以在外加电场下以可逆方式进行操控。