Suppr超能文献

高级生物物理模型,用于捕获 EQS 电容式 HBC 的通道可变性。

Advanced Biophysical Model to Capture Channel Variability for EQS Capacitive HBC.

出版信息

IEEE Trans Biomed Eng. 2021 Nov;68(11):3435-3446. doi: 10.1109/TBME.2021.3074138. Epub 2021 Oct 19.

Abstract

Human Body Communication (HBC) has come up as a promising alternative to traditional radio frequency (RF) Wireless Body Area Network (WBAN) technologies. This is essentially due to HBC providing a broadband communication channel with enhanced signal security in the physical layer due to lower radiation from the human body as compared to its RF counterparts. An in-depth understanding of the mechanism for the channel loss variability and associated biophysical model needs to be developed before electro-quasistatic (EQS) HBC can be used more frequently in WBAN consumer and medical applications. Recent developments have shown biophysical models that capture the channel response for fixed transmitter and receiver positions on the human body which do not capture the variability in the HBC channel for varying positions of the devices with respect to the body. In this study, we provide a detailed analysis of the change in path loss in a capacitive-HBC channel in the EQS domain. Causes of channel loss variability namely: inter-device coupling and effects of fringe fields due to body's shadowing effects are investigated. FEM based simulation results are used to analyze the channel response of human body for different positions and sizes of the device which are further verified using measurement results to validate the developed biophysical model. Using the biophysical model, we develop a closed form equation for the path loss in a capacitive HBC channel which is then analyzed as a function of the geometric properties of the device and the position with respect to the human body which will help pave the path towards future EQS-HBC WBAN design.

摘要

人体通信 (HBC) 作为传统射频 (RF) 无线体域网 (WBAN) 技术的替代方案,已经引起了广泛关注。这主要是因为 HBC 在物理层提供了一个宽带通信信道,由于人体的辐射比其 RF 对应物低,因此信号安全性得到了增强。在 EQS HBC 更频繁地用于 WBAN 消费者和医疗应用之前,需要深入了解信道损耗变化的机制和相关的生物物理模型。最近的发展表明,生物物理模型可以捕获人体固定发射机和接收机位置的信道响应,但无法捕获设备相对于人体位置变化时 HBC 信道的可变性。在这项研究中,我们在 EQS 域中对电容式 HBC 信道中的路径损耗变化进行了详细分析。研究了导致信道损耗变化的原因,即:设备间的耦合以及人体阴影效应引起的边缘场的影响。基于有限元法 (FEM) 的仿真结果用于分析人体不同位置和设备大小的信道响应,并使用测量结果进行验证,以验证所开发的生物物理模型。使用生物物理模型,我们为电容式 HBC 信道中的路径损耗开发了一个封闭形式的方程,然后根据设备的几何特性和相对于人体的位置对其进行分析,这将有助于为未来的 EQS-HBC WBAN 设计铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验