A Hobbie Erik, Werner Roland A
Max-Planck-Institute for Biogeochemistry, Jena, Germany; Present address: Complex Systems Research Center, Morse Hall, University of New Hampshire, Durham, New Hampshire 03824-3525, USA.
Present address: Institut für Pflanzenwissenschaften ETH Zentrum, LFW C48.1, Universitätsstrasse Z, 8092 Zürich, Switzerland.
New Phytol. 2004 Feb;161(2):371-385. doi: 10.1111/j.1469-8137.2004.00970.x.
Studies using carbon isotope differences between C and C photosynthesis to calculate terrestrial productivity or soil carbon turnover assume that intramolecular isotopic patterns and isotopic shifts between specific plant components are similar in C and C plants. To test these assumptions, we calculated isotopic differences in studies measuring components from C or C photosynthesis. Relative to source sugars in fermentation, C -derived ethanol had less C and C -derived CO had more C than C -derived ethanol and CO . Both results agreed with intramolecular isotopic signatures in C and C glucose. Isotopic shifts between plant compounds (e.g. lignin and cellulose) or tissues (e.g. leaves and roots) also differed in C and C plants. Woody C plants allocated more carbon to C-depleted compounds such as lignin or lipids than herbaceous C or C plants. This allocation influenced C patterns among compounds and tissues. Photorespiration and isotopic fractionation at metabolic branch points, coupled to different allocation patterns during metabolism for C vs C plants, probably influence position-specific and compound-specific isotopic differences. Differing C content of mobile and immobile compounds (e.g. sugars vs lignin) may then create isotopic differences among plant pools and along transport pathways. We conclude that a few basic mechanisms can explain intramolecular, compound-specific and bulk isotopic differences between C and C plants. Understanding these mechanisms will improve our ability to link bulk and compound-specific isotopic patterns to metabolic pathways in C and C plants. Contents Summary 371 I. Introduction 372 II. Methods and terminology 373 III. Results 373 IV. Discussion 376 V. Conclusions 382 Acknowledgements 382 References 382.
利用C₃和C₄光合作用之间的碳同位素差异来计算陆地生产力或土壤碳周转的研究假设,C₃和C₄植物中分子内同位素模式以及特定植物组分之间的同位素偏移是相似的。为了检验这些假设,我们在测量C₃或C₄光合作用组分的研究中计算了同位素差异。相对于发酵中的源糖,C₄衍生的乙醇比C₃衍生的乙醇含¹³C更少,C₄衍生的CO₂比C₃衍生的CO₂含¹³C更多。这两个结果均与C₃和C₄葡萄糖中的分子内同位素特征一致。C₃和C₄植物中植物化合物(如木质素和纤维素)或组织(如叶片和根系)之间的同位素偏移也存在差异。木本C₃植物比草本C₃或C₄植物将更多碳分配到¹³C贫化的化合物如木质素或脂质中。这种分配影响了化合物和组织之间的¹³C模式。光呼吸和代谢分支点处的同位素分馏,再加上C₃和C₄植物在代谢过程中不同的分配模式,可能影响位置特异性和化合物特异性的同位素差异。可移动和不可移动化合物(如糖与木质素)不同的¹³C含量可能进而在植物库之间以及沿运输途径产生同位素差异。我们得出结论,一些基本机制可以解释C₃和C₄植物之间的分子内、化合物特异性和整体同位素差异。了解这些机制将提高我们将整体和化合物特异性同位素模式与C₃和C₄植物代谢途径相联系的能力。内容摘要371 一、引言372 二、方法和术语373 三、结果373 四、讨论376 五、结论382 致谢382 参考文献382 。