Suppr超能文献

变水和恒水:对立还是可能性的范围?

Poikilohydry and homoihydry: antithesis or spectrum of possibilities?

作者信息

Proctor Michael C F, Tuba Zoltán

机构信息

School of Biological Sciences, University of Exeter, Washington Singer Laboratories, Perry Road, Exeter EX4 4PS, UK.

Department of Botany and Plant Physiology and Departmental Research Group of Hungarian Academy of Sciences, Faculty of Agricultural and Environmental Sciences, Szent István University, H-2103 Gödöllõ, Páter K. u. 1., Hungary.

出版信息

New Phytol. 2002 Dec;156(3):327-349. doi: 10.1046/j.1469-8137.2002.00526.x.

Abstract

Plants have followed two principal (and contrasting) strategies of adaptation to the irregular supply of water on land, which are closely bound up with scale. Vascular plants evolved internal transport from the soil to the leafy canopy (but their 'homoihydry' is far from absolute, and some are desiccation tolerant (DT)). Bryophytes depended on desiccation tolerance, suspending metabolism when water was not available; their cells are generally either fully turgid or desiccated. Desiccation tolerance requires preservation intact through drying-re-wetting cycles of essential cell components and their functional relationships, and controlled cessation and restarting of metabolism. In many bryophytes and some vascular plants tolerance is essentially constitutive. In other vascular plants (particularly poikilochlorophyllous species) and some bryophytes tolerance is induced by water stress. Desiccation tolerance is adaptively optimal on hard substrates impenetrable to roots, and on poor dry soils in seasonally dry climates. DT vascular plants are commonest in warm semiarid climates; DT mosses and lichens occur from tropical to polar regions. DT plants vary widely in their inertia to changing water content. Some mosses and lichens dry out and recover within an hour or less; vascular species typically respond on a time scale of one to a few days. Contents Summary 327 I. Introduction 328 II. The soil-plant-atmosphere continuum 329 III. Desiccation-tolerant plants: taxonomic distribution and functional characteristics 331 IV. Anatomical and physiological requirements and implications of desiccation tolerance 333 V. Time-scale considerations and ecological adaptation 340 VI. Conclusion 344 Acknowledgements 344 References 344.

摘要

植物在适应陆地上不规则的水分供应方面遵循了两种主要(且截然不同)的策略,这两种策略与规模密切相关。维管植物进化出了从土壤到叶冠的内部运输系统(但它们的“同水态”远非绝对,有些植物具有耐干燥性(DT))。苔藓植物则依赖耐干燥性,在缺水时暂停新陈代谢;它们的细胞通常要么完全膨胀,要么干燥。耐干燥性要求基本细胞成分及其功能关系在干燥 - 再湿润循环中保持完整,并控制新陈代谢的停止和重启。在许多苔藓植物和一些维管植物中,耐干燥性基本上是组成型的。在其他维管植物(特别是叶绿素可变的物种)和一些苔藓植物中,耐干燥性是由水分胁迫诱导的。耐干燥性在根系无法穿透的坚硬基质上以及季节性干旱气候下贫瘠的干燥土壤上具有适应性优势。具有耐干燥性的维管植物在温暖的半干旱气候中最为常见;具有耐干燥性的苔藓和地衣分布于从热带到极地的地区。具有耐干燥性的植物在对含水量变化的惯性方面差异很大。一些苔藓和地衣在一小时或更短时间内干燥并恢复;维管植物物种通常在一到几天的时间尺度上做出反应。内容摘要327 一、引言328 二、土壤 - 植物 - 大气连续体329 三、耐干燥植物:分类分布和功能特征331 四、耐干燥性的解剖学和生理学要求及影响333 五、时间尺度考量和生态适应340 六、结论344 致谢344 参考文献344

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验