Brodersen Craig R, Brodribb Tim J, Hochberg Uri, Holbrook N Michele, McAdam Scott A M, Zailaa Joseph, Huggett Brett A, Marmottant Philippe
School of the Environment, Yale University, New Haven, CT 06511.
Department of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2419887122. doi: 10.1073/pnas.2419887122. Epub 2025 Mar 26.
Diversification of plant hydraulic architecture and stomatal function coincides with radical changes in the Earth's atmosphere over the past 400 my. Due to shared stomatal anatomy with the earliest land plants, bryophyte stomatal behavior may provide insights into the evolution of stomatal function, but significant uncertainty remains due to technical limitations of measuring guard cell turgor pressure in situ. Here, we introduce a method for monitoring cell turgor pressure by nucleating microbubbles within the guard cells of intact plant tissue and then examining microbubble growth and dissolution dynamics. First, we show that maximum microbubble radius decreases with increasing pressure as the pressure of the surrounding fluid constrains its growth according to a modified version of the Epstein-Plesset equation. We then apply this method to monitor turgor pressure in dark- vs. light-acclimated guard cells across bryophyte taxa with stomata, where their role in gas-exchange remains ambiguous, and in vascular plants with well-documented light-dependent turgor modulation. Our findings show no light-activated change in turgor in bryophyte guard cells, with pressures not significantly different than neighboring epidermal cells. In contrast, vascular plants show distinct pressure modulation in response to light that drives reversible changes in stomatal aperture. Complete guard cell turgor loss had no effect on bryophyte stomatal aperture but resulted in partial or complete closure in vascular plants. These results suggest that despite conserved stomatal morphology, the sampled bryophytes lack dynamic control over guard cell turgor that is critical for sustaining photosynthesis and inhibiting desiccation.
在过去的4亿年里,植物水力结构和气孔功能的多样化与地球大气的剧烈变化同时发生。由于与最早的陆地植物具有共同的气孔解剖结构,苔藓植物的气孔行为可能为气孔功能的进化提供见解,但由于原位测量保卫细胞膨压的技术限制,仍存在重大不确定性。在这里,我们介绍了一种通过在完整植物组织的保卫细胞内形成微气泡,然后检查微气泡的生长和溶解动力学来监测细胞膨压的方法。首先,我们表明,随着周围流体压力根据修正版的爱泼斯坦-普列塞特方程限制其生长,最大微气泡半径随压力增加而减小。然后,我们应用这种方法来监测有气孔的苔藓植物类群中适应黑暗与适应光照的保卫细胞的膨压,气孔在这些植物中的气体交换作用仍不明确,同时也监测维管植物中记录良好的光依赖性膨压调节。我们的研究结果表明,苔藓植物保卫细胞的膨压没有光激活变化,其压力与相邻表皮细胞没有显著差异。相比之下,维管植物对光表现出明显的压力调节,从而驱动气孔孔径发生可逆变化。保卫细胞完全失去膨压对苔藓植物的气孔孔径没有影响,但导致维管植物部分或完全关闭。这些结果表明,尽管气孔形态保守,但所研究的苔藓植物缺乏对保卫细胞膨压的动态控制,而这种控制对于维持光合作用和抑制脱水至关重要。