Suppr超能文献

冲击诱导微观气泡坍塌的分子动力学模拟

Molecular dynamics simulation of shock-induced microscopic bubble collapse.

作者信息

Zhan Shengpeng, Duan Haitao, Pan Lin, Tu Jiesong, Jia Dan, Yang Tian, Li Jian

机构信息

State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan Research Institute of Materials Protection, Wuhan 430030, China.

出版信息

Phys Chem Chem Phys. 2021 Apr 14;23(14):8446-8455. doi: 10.1039/d1cp00406a. Epub 2021 Mar 25.

Abstract

Shock waves and micro-jets generated during the process of bubble collapse lead to cavitation damage on the surface of materials in hydraulic machinery equipment parts, which is attention. However, research on the dynamics of bubble collapse is still unclear. In this work, molecular dynamics (MD) simulations are used to study the compression and collapse processes of microscopic bubbles under the impact of different velocities for water molecules. The velocities of the shock wave, time of bubble collapse and shock pressure of collapse were obtained. Results showed that higher the impact velocity, shorter is the time of bubble collapse and the higher velocity of the micro-jet. After the bubble collapse, the micro-jet will form secondary water hammer shocks and a greater shock pressure. The water structure appears to undergo a phase change (ice-VII structure) when the velocity of water molecules is 1.0 km s. The shock induces the bubble collapse and the micro-jet significantly increases the chemical activity of water molecules; the degree of ionization of water molecules increases with the shock velocity. In addition, the Hugoniot curve of the shock velocity obtained by molecular dynamics simulations are in good agreement with the experimental data.

摘要

气泡坍塌过程中产生的冲击波和微射流会对水力机械设备部件中的材料表面造成空蚀损伤,这受到关注。然而,关于气泡坍塌动力学的研究仍不明确。在这项工作中,采用分子动力学(MD)模拟来研究不同速度的水分子冲击下微观气泡的压缩和坍塌过程。获得了冲击波速度、气泡坍塌时间和坍塌时的冲击压力。结果表明,冲击速度越高,气泡坍塌时间越短,微射流速度越高。气泡坍塌后,微射流会形成二次水击冲击且冲击压力更大。当水分子速度为1.0 km/s时,水结构似乎会发生相变(冰-VII结构)。冲击引发气泡坍塌,微射流显著增加了水分子的化学活性;水分子的电离程度随冲击速度增加。此外,分子动力学模拟得到的冲击速度的雨贡纽曲线与实验数据吻合良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验