Department of Neuroscience, Carney Institute for Brain Sciences, Brown University, Providence, USA.
Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
Brain Topogr. 2022 Jan;35(1):19-35. doi: 10.1007/s10548-021-00838-0. Epub 2021 Apr 19.
Auditory evoked fields (AEFs) are commonly studied, yet their underlying neural mechanisms remain poorly understood. Here, we used the biophysical modelling software Human Neocortical Neurosolver (HNN) whose foundation is a canonical neocortical circuit model to interpret the cell and network mechanisms contributing to macroscale AEFs elicited by a simple tone, measured with magnetoencephalography. We found that AEFs can be reproduced by activating the neocortical circuit through a layer specific sequence of feedforward and feedback excitatory synaptic drives, similar to prior simulation of somatosensory evoked responses, supporting the notion that basic structures and activation patterns are preserved across sensory regions. We also applied the modeling framework to develop and test predictions on neural mechanisms underlying AEF differences in the left and right hemispheres, as well as in hemispheres contralateral and ipsilateral to the presentation of the auditory stimulus. We found that increasing the strength of the excitatory synaptic cortical feedback inputs to supragranular layers simulates the commonly observed right hemisphere dominance, while decreasing the input latencies and simultaneously increasing the number of cells contributing to the signal accounted for the contralateral dominance. These results provide a direct link between human data and prior animal studies and lay the foundation for future translational research examining the mechanisms underlying alteration in this fundamental biomarker of auditory processing in healthy cognition and neuropathology.
听觉诱发电位(AEFs)是常见的研究对象,但它们的潜在神经机制仍未被很好地理解。在这里,我们使用生物物理建模软件 Human Neocortical Neurosolver(HNN),其基础是一个经典的新皮质电路模型,用于解释导致简单音调诱发的宏观 AEF 的细胞和网络机制,这些 AEF 是通过脑磁图测量得到的。我们发现,通过激活新皮质电路,可以再现 AEF,其方式是通过特定于层的前馈和反馈兴奋性突触驱动的顺序,类似于体感诱发电响应的先前模拟,支持了这样一种观点,即基本结构和激活模式在不同感觉区域是被保留的。我们还应用建模框架来开发和测试关于左、右半球以及听觉刺激呈现的对侧和同侧半球 AEF 差异的神经机制的预测。我们发现,增加超颗粒层的兴奋性皮质反馈输入强度模拟了常见的右半球优势,而减少输入潜伏期并同时增加对信号有贡献的细胞数量则解释了对侧优势。这些结果为人类数据和先前的动物研究之间建立了直接联系,并为未来的转化研究奠定了基础,这些研究旨在检查在健康认知和神经病理学中这种听觉处理基本生物标志物改变的机制。