Ghanem Loujain G, Sayed Doha M, Ahmed Nashaat, Ramadan Mohamed, Allam Nageh K
Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.
Langmuir. 2021 May 4;37(17):5161-5171. doi: 10.1021/acs.langmuir.1c00088. Epub 2021 Apr 20.
We demonstrate the fabrication of binder-free electrospun nickel-manganese oxides embedded into carbon-shell fibrous electrodes. The morphological and structural properties of the assembled electrode materials were elucidated by high-resolution transmission electron microscopy (HR-TEM), field-emission scanning electron microscopy, and glancing-angle X-ray diffraction. The fibrous structure of the electrodes was retained even after annealing at high temperatures. The X-ray photoelectron spectroscopy and HR-TEM analyses revealed the formation of nickel and manganese oxides in multiple oxidation states (Ni, Ni, Mn, Mn, and Mn) embedded in the carbon shell. The embedded nickel-manganese oxides into the carbon matrix fibrous electrodes exhibit an excellent capacitance (1082 F/g) in 1 M KSO at 1 A/g and possess a high rate capability of 73% at 5 A/g. The high rate capability and capacitance can be attributed to the presence of carbon cross-linked channels, the binder-free nature of the electrodes, and various oxidation states of the Ni-Mn oxides. The asymmetric supercapacitor device constructed of the as-fabricated nanofibers and the bio-derived microporous carbon as the positive and negative electrodes, respectively, sustains up to 1.9 V with a high specific capacitance at 1.5 A/g of 108 F/g. The nanofibrous//bio-derived device exhibits an outstanding specific energy of 54.2 W h/kg with a high specific power of 1425 W/kg. Interestingly, the tested device maintains a high capacitive retention of 92% upon cycling over 10,000 charging/discharging cycles.
我们展示了一种无粘结剂的电纺镍锰氧化物嵌入碳壳纤维电极的制备方法。通过高分辨率透射电子显微镜(HR-TEM)、场发射扫描电子显微镜和掠角X射线衍射对组装电极材料的形态和结构特性进行了阐明。即使在高温退火后,电极的纤维结构仍得以保留。X射线光电子能谱和HR-TEM分析表明,在碳壳中形成了多种氧化态的镍和锰氧化物(Ni、Ni、Mn、Mn和Mn)。嵌入碳基纤维电极中的镍锰氧化物在1 M KSO中于1 A/g时表现出优异的电容(1082 F/g),在5 A/g时具有73%的高倍率性能。高倍率性能和电容可归因于碳交联通道的存在、电极的无粘结剂性质以及Ni-Mn氧化物的多种氧化态。由所制备的纳米纤维和生物衍生的微孔碳分别作为正负极构建的不对称超级电容器器件,在1.5 A/g时具有高达1.9 V的电压和108 F/g的高比电容。纳米纤维//生物衍生器件表现出54.2 W h/kg的杰出比能量和1425 W/kg的高比功率。有趣的是,经过10000次充放电循环测试后,该器件仍保持92%的高电容保持率。