Suppr超能文献

用于便携式储能应用的无粘合剂、低电阻随机取向纳米棒/片状硫化锌-硫化钼电极材料的合成

Synthesis of Binder-Free, Low-Resistant Randomly Orientated Nanorod/Sheet ZnS-MoS as Electrode Materials for Portable Energy Storage Applications.

作者信息

Raza Asif, Rasheed Abdur, Farid Amjad, Yousaf Misbah, Ayub Noman, Khan Ijaz Ahmad

机构信息

PPEM-Lab, Department of Physics, Government College University Faisalabad, 38000 Faisalabad, Pakistan.

出版信息

ACS Omega. 2024 Jun 24;9(26):27919-27931. doi: 10.1021/acsomega.3c09560. eCollection 2024 Jul 2.

Abstract

The scientific community needs to conduct research on novel electrodes for portable energy storage (PES) devices like supercapacitors (S-Cs) and lithium-ion batteries (Li-ion-Bs) to overcome energy crises, especially in rural areas where no electrical poles are available. Herein, the nanostructured MoS and ZnS-MoS E-Ms consisting of nanoparticles/rods/sheets (N-Ps-Rs-Ss) are deposited on hierarchical nickel foam by a homemade chemical vapor deposition (H-M CVD) route. The X-ray diffraction patterns confirm the formation of polycrystalline films growing along various orientations, whereas the field-emission scanning electron microscope analysis confirms the formation of N-Ps-Rs-Ss. The change in structural and microstructural parameters indicates the existence of defects improving the energy storage ability of the deposited ZnS-MoS@Ni-F electrodes. The specific capacitances of MoS@Ni-F and ZnS-MoS@Ni-F electrodes are found to be 1763 and 3565 F/g at 0.5 mV/s and 1451 and 3032 F/g at 1 A/g, respectively. The growing behavior of impedance graphs indicates their capacitive nature; however, the shifting of impedance curves toward -axis indicates that the increasing diffusion rates due to the formation of nanostructures of ZnS-MoS results in low impedance. An excellent energy storage performance, minimum capacity fading, and improved electrical conductivity of the deposited E-Ms are due to the combined contributions of the electrical double layer and pseudocapacitor nature, which is again confirmed by theoretical Dunn's model. The absence of charge transfer resistance and good capacitance retention (95%) even after 10,000 cycles indicates that the deposited E-Ms are better for PES devices like S-Cs and Li-ion-Bs than MoS E-Ms. The assembled asymmetric supercapacitor device exhibited the maximum specific capacitance = 996 F/g, energy density = 354-285 W h/kg, power density = 2400-24,000 W/kg, capacitance retention = 95% and Coulombic efficiency = 100% even after a long charging-discharging of 10,000 cycles.

摘要

科学界需要对用于便携式储能(PES)设备(如超级电容器(S-Cs)和锂离子电池(Li-ion-Bs))的新型电极进行研究,以克服能源危机,特别是在没有电线杆的农村地区。在此,通过自制化学气相沉积(H-M CVD)路线将由纳米颗粒/棒/片(N-Ps-Rs-Ss)组成的纳米结构MoS和ZnS-MoS E-Ms沉积在分级泡沫镍上。X射线衍射图谱证实了沿不同取向生长的多晶膜的形成,而场发射扫描电子显微镜分析证实了N-Ps-Rs-Ss的形成。结构和微观结构参数的变化表明存在缺陷,这些缺陷提高了沉积的ZnS-MoS@Ni-F电极的储能能力。发现MoS@Ni-F和ZnS-MoS@Ni-F电极在0.5 mV/s时的比电容分别为1763和3565 F/g,在1 A/g时分别为1451和3032 F/g。阻抗图的增长行为表明其电容性质;然而,阻抗曲线向负轴的移动表明,由于ZnS-MoS纳米结构的形成导致扩散速率增加,从而导致低阻抗。沉积的E-Ms具有优异的储能性能、最小的容量衰减和改善的电导率,这是由于双电层和赝电容性质的共同作用,这再次得到理论邓恩模型的证实。即使在10000次循环后,也没有电荷转移电阻且具有良好的电容保持率(95%),这表明沉积的E-Ms比MoS E-Ms更适合用于S-Cs和Li-ion-Bs等PES设备。组装的不对称超级电容器装置即使在10000次长时间充放电后,仍表现出最大比电容=996 F/g、能量密度=354-285 W h/kg、功率密度=2400-24000 W/kg、电容保持率=95%和库仑效率=100%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52b/11223144/47ffe88c88e4/ao3c09560_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验