Department of Biochemistry, McGill University, Montreal, QC H3A 2B4, Canada;
Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 2B4, Canada.
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.2025522118.
The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) integrates multiple signals to regulate critical cellular processes such as mRNA translation, lipid biogenesis, and autophagy. Germline and somatic mutations in mTOR and genes upstream of mTORC1, such as , , , , and components of GATOR1 and KICSTOR complexes, are associated with various epileptic disorders. Increased mTORC1 activity is linked to the pathophysiology of epilepsy in both humans and animal models, and mTORC1 inhibition suppresses epileptogenesis in humans with tuberous sclerosis and animal models with elevated mTORC1 activity. However, the role of mTORC1-dependent translation and the neuronal cell types mediating the effect of enhanced mTORC1 activity in seizures remain unknown. The eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and 2 (4E-BP2) are translational repressors downstream of mTORC1. Here we show that the ablation of 4E-BP2, but not 4E-BP1, in mice increases the sensitivity to pentylenetetrazole (PTZ)- and kainic acid (KA)-induced seizures. We demonstrate that the deletion of 4E-BP2 in inhibitory, but not excitatory neurons, causes an increase in the susceptibility to PTZ-induced seizures. Moreover, mice lacking 4E-BP2 in parvalbumin, but not somatostatin or VIP inhibitory neurons exhibit a lowered threshold for seizure induction and reduced number of parvalbumin neurons. A mouse model harboring a human mutation that enhances the activity of the PI3K-AKT pathway ( ) selectively in parvalbumin neurons shows susceptibility to PTZ-induced seizures. Our data identify 4E-BP2 as a regulator of epileptogenesis and highlight the central role of increased mTORC1-dependent translation in parvalbumin neurons in the pathophysiology of epilepsy.
雷帕霉素哺乳动物靶标(mTOR)复合物 1(mTORC1)整合多种信号,调节关键的细胞过程,如 mRNA 翻译、脂质生物发生和自噬。mTOR 和 mTORC1 上游基因(如、、、、和 GATOR1 和 KICSTOR 复合物的组成部分)的种系和体细胞突变与各种癫痫疾病有关。在人类和动物模型中,mTORC1 活性增加与癫痫的病理生理学有关,mTORC1 抑制可抑制结节性硬化症患者和 mTORC1 活性升高的动物模型中的癫痫发生。然而,mTORC1 依赖性翻译的作用以及介导增强的 mTORC1 活性在癫痫发作中的神经元细胞类型仍不清楚。真核翻译起始因子 4E 结合蛋白 1(4E-BP1)和 2(4E-BP2)是 mTORC1 下游的翻译抑制剂。在这里,我们表明,在小鼠中敲除 4E-BP2(而非 4E-BP1)会增加对戊四氮(PTZ)和海人酸(KA)诱导的癫痫发作的敏感性。我们证明,在抑制性神经元(而非兴奋性神经元)中敲除 4E-BP2 会导致对 PTZ 诱导的癫痫发作的敏感性增加。此外,在缺乏 4E-BP2 的小鼠中,缺乏 4E-BP2 的 Parvalbumin 神经元,但不缺乏 Somatostatin 或 VIP 抑制性神经元,表现出癫痫诱导的阈值降低和 Parvalbumin 神经元数量减少。在 Parvalbumin 神经元中选择性增强 PI3K-AKT 通路活性的人类 突变的小鼠模型()表现出对 PTZ 诱导的癫痫发作的易感性。我们的数据确定 4E-BP2 是癫痫发生的调节因子,并强调了增加的 mTORC1 依赖性翻译在癫痫病理生理学中 Parvalbumin 神经元中的核心作用。