Suppr超能文献

基于数据驱动的蛋白质液-液相分离预测疏水性尺度。

A Data-Driven Hydrophobicity Scale for Predicting Liquid-Liquid Phase Separation of Proteins.

机构信息

Laboratory of Chemical Physics, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States.

出版信息

J Phys Chem B. 2021 Apr 29;125(16):4046-4056. doi: 10.1021/acs.jpcb.0c11479. Epub 2021 Apr 20.

Abstract

An accurate model for macroscale disordered assemblies of biological macromolecules such as those formed in so-called membraneless organelles would greatly assist in studying their structure, function, and dynamics. Recent evidence has suggested that liquid-liquid phase separation (LLPS) underlies the formation of membraneless organelles. While the general mechanism of exchange of macromolecule/water for macromolecule/macromolecule interactions is known to be the driving force for LLPS, the specific interactions involved are not well understood. One way that protein-water and protein-protein interactions have been understood historically is via hydrophobicity scales. However, these scales are typically optimized for describing these relative interactions in certain cases, such as protein folding or insertion of proteins into membranes. To better describe the relative interactions of proteins that undergo LLPS, we have developed a new, data-driven hydrophobicity scale. To determine the new scale, we used coarse-grained molecular dynamics simulations using the hydrophobicity scale coarse-grained model, which relates the interactions between amino acids to their hydrophobicity. Hydrophobicity values were determined via the force-balance method on a library of proteins that includes unfolded, intrinsically disordered, and phase-separating proteins (PSP). The resulting hydrophobicity scale can better predict whether a given protein will undergo LLPS at physiological conditions by using coarse-grained molecular dynamics simulations than existing hydrophobicity scales. This new scale confirms the importance of π-π interactions between amino acids as important drivers of LLPS. This new hydrophobicity scale provides a convenient and compact description of protein-protein interactions for proteins that undergo LLPS and could be used to develop new models to describe interactions between PSP and other components, such as nucleic acids.

摘要

一个精确的模型来描述生物大分子的宏观无序组装,例如在所谓的无膜细胞器中形成的组装,将极大地有助于研究它们的结构、功能和动力学。最近的证据表明,液-液相分离(LLPS)是无膜细胞器形成的基础。虽然已知大分子/水与大分子/大分子相互作用的交换的一般机制是 LLPS 的驱动力,但涉及的具体相互作用尚不清楚。从历史上看,理解蛋白质-水和蛋白质-蛋白质相互作用的一种方法是通过疏水性尺度。然而,这些尺度通常是针对某些情况(例如蛋白质折叠或蛋白质插入膜中)优化的,以描述这些相对相互作用。为了更好地描述经历 LLPS 的蛋白质的相对相互作用,我们开发了一种新的、数据驱动的疏水性尺度。为了确定新的尺度,我们使用粗粒度分子动力学模拟,使用疏水性尺度粗粒度模型,该模型将氨基酸之间的相互作用与其疏水性联系起来。疏水性值通过力平衡方法在包括未折叠、固有无序和相分离蛋白(PSP)的蛋白质库中确定。与现有疏水性尺度相比,使用粗粒度分子动力学模拟,新的疏水性尺度可以更好地预测给定蛋白质在生理条件下是否会经历 LLPS。新尺度证实了氨基酸之间的π-π相互作用作为 LLPS 的重要驱动因素的重要性。这个新的疏水性尺度为经历 LLPS 的蛋白质提供了一种方便紧凑的蛋白质-蛋白质相互作用描述,可用于开发新模型来描述 PSP 与其他成分(如核酸)之间的相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验