Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany.
Medical faculty Heidelberg, Universität Heidelberg, Heidelberg, Germany.
Int J Comput Assist Radiol Surg. 2021 May;16(5):767-777. doi: 10.1007/s11548-021-02329-w. Epub 2021 Apr 20.
Reduction and osteosynthesis of ankle fractures is a challenging surgical procedure when it comes to the verification of the reduction result. Evaluation is conducted using intra-operative imaging of the injured ankle and depends on the expertise of the surgeon. Studies suggest that intra-individual variance of the ankle bone shape and pose is considerably lower than the inter-individual variance. It stands to reason that the information gain from the healthy contralateral side can help to improve the evaluation.
In this paper, an assistance system is proposed that provides a side-to-side view of the two ankle joints for visual comparison and instant evaluation using only one 3D C-arm image. Two convolutional neural networks (CNN) are employed to extract the relevant image regions and pose information of each ankle so that they can be aligned with each other. A first U-Net uses a sliding window to predict the location of each ankle. The standard plane estimation is formulated as segmentation problem so that a second U-Net predicts the three viewing planes for alignment.
Experiments were conducted to assess the accuracy of the individual steps on 218 unilateral ankle datasets as well as the overall performance on 7 bilateral ankle datasets. The experiments on unilateral ankles yield a median position-to-plane error of [Formula: see text] mm and a median angular error between 2.98[Formula: see text] and 3.71[Formula: see text] for the plane normals.
Standard plane estimation via segmentation outperforms direct pose regression. Furthermore, the complete pipeline was evaluated including ankle detection and subsequent plane estimation on bilateral datasets. The proposed pipeline enables a direct contralateral side comparison without additional radiation. This has the potential to ease and improve the intra-operative evaluation for the surgeons in the future and reduce the need for revision surgery.
在踝关节骨折的复位和内固定手术中,验证复位效果是一项具有挑战性的操作。评估过程需要术中对受伤踝关节进行影像学检查,并依赖于外科医生的专业知识。研究表明,个体踝关节骨骼形状和姿势的个体内差异明显低于个体间差异。因此,从健康对侧获得的信息增益有助于提高评估效果。
本文提出了一种辅助系统,该系统仅使用一个 3D C 臂图像即可提供双侧踝关节的侧位视图,以便进行视觉比较和即时评估。该系统使用两个卷积神经网络(CNN)来提取每个踝关节的相关图像区域和姿势信息,以便相互对齐。第一个 U-Net 使用滑动窗口预测每个踝关节的位置。标准平面估计被公式化为分割问题,以便第二个 U-Net 预测用于对齐的三个观察平面。
在 218 个单侧踝关节数据集上评估了各个步骤的准确性,以及在 7 个双侧踝关节数据集上的整体性能。单侧踝关节实验的中位数位置到平面误差为 [公式:见文本]mm,平面法向量的中位数角度误差在 2.98[公式:见文本]和 3.71[公式:见文本]之间。
通过分割进行标准平面估计优于直接姿势回归。此外,还对包括双侧数据集上的踝关节检测和后续平面估计在内的完整流水线进行了评估。所提出的流水线无需额外辐射即可实现直接的对侧比较。这有可能减轻并改善未来手术医生的术中评估,并减少修正手术的需求。