Brehler Michael, Görres Joseph, Franke Jochen, Barth Karl, Vetter Sven Y, Grützner Paul A, Meinzer Hans-Peter, Wolf Ivo, Nabers Diana
Division of Medical and Biological Informatics (E130), German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
BG Trauma Center, Ludwig-Guttmann-Straße 13, 67071, Ludwigshafen am Rhein, Germany.
Int J Comput Assist Radiol Surg. 2016 Mar;11(3):495-504. doi: 10.1007/s11548-015-1281-3. Epub 2015 Aug 28.
With the help of an intra-operative mobile C-arm CT, medical interventions can be verified and corrected, avoiding the need for a post-operative CT and a second intervention. An exact adjustment of standard plane positions is necessary for the best possible assessment of the anatomical regions of interest but the mobility of the C-arm causes the need for a time-consuming manual adjustment. In this article, we present an automatic plane adjustment at the example of calcaneal fractures.
We developed two feature detection methods (2D and pseudo-3D) based on SURF key points and also transferred the SURF approach to 3D. Combined with an atlas-based registration, our algorithm adjusts the standard planes of the calcaneal C-arm images automatically. The robustness of the algorithms is evaluated using a clinical data set. Additionally, we tested the algorithm's performance for two registration approaches, two resolutions of C-arm images and two methods for metal artifact reduction.
For the feature extraction, the novel 3D-SURF approach performs best. As expected, a higher resolution ([Formula: see text] voxel) leads also to more robust feature points and is therefore slightly better than the [Formula: see text] voxel images (standard setting of device). Our comparison of two different artifact reduction methods and the complete removal of metal in the images shows that our approach is highly robust against artifacts and the number and position of metal implants.
By introducing our fast algorithmic processing pipeline, we developed the first steps for a fully automatic assistance system for the assessment of C-arm CT images.
借助术中移动C形臂CT,可对医疗干预进行验证和校正,从而避免术后CT检查及二次干预的需要。为了尽可能准确地评估感兴趣的解剖区域,需要精确调整标准平面位置,但C形臂的移动性导致需要进行耗时的手动调整。在本文中,我们以跟骨骨折为例介绍一种自动平面调整方法。
我们基于加速鲁棒特征(SURF)关键点开发了两种特征检测方法(二维和伪三维),并将SURF方法应用于三维。结合基于图谱的配准,我们的算法可自动调整跟骨C形臂图像的标准平面。使用临床数据集评估算法的稳健性。此外,我们针对两种配准方法、C形臂图像的两种分辨率以及两种减少金属伪影的方法测试了算法的性能。
对于特征提取,新型三维SURF方法表现最佳。正如预期的那样,更高的分辨率([公式:见原文]体素)也会产生更稳健的特征点,因此略优于[公式:见原文]体素图像(设备的标准设置)。我们对两种不同的伪影减少方法以及图像中金属的完全去除进行的比较表明,我们的方法对伪影以及金属植入物的数量和位置具有高度稳健性。
通过引入我们快速的算法处理流程,我们为C形臂CT图像评估的全自动辅助系统迈出了第一步。