Li Yuanwei, Alansary Amir, Cerrolaza Juan J, Khanal Bishesh, Sinclair Matthew, Matthew Jacqueline, Gupta Chandni, Knight Caroline, Kainz Bernhard, Rueckert Daniel
Biomedical Image Analysis Group Imperial College London UK.
School of Biomedical Engineering & Imaging Sciences King's College London UK.
Med Image Comput Comput Assist Interv. 2018;2018:563-571. doi: 10.1007/978-3-030-00928-1_64. Epub 2018 Sep 26.
We propose a new Patch-based Iterative Network (PIN) for fast and accurate landmark localisation in 3D medical volumes. PIN utilises a Convolutional Neural Network (CNN) to learn the spatial relationship between an image patch and anatomical landmark positions. During inference, patches are repeatedly passed to the CNN until the estimated landmark position converges to the true landmark location. PIN is computationally efficient since the inference stage only selectively samples a small number of patches in an iterative fashion rather than a dense sampling at every location in the volume. Our approach adopts a multitask learning framework that combines regression and classification to improve localisation accuracy. We extend PIN to localise multiple landmarks by using principal component analysis, which models the global anatomical relationships between landmarks. We have evaluated PIN using 72 3D ultrasound images from fetal screening examinations. PIN achieves quantitatively an average landmark localisation error of 5.59mm and a runtime of 0.44s to predict 10 landmarks per volume. Qualitatively, anatomical 2D standard scan planes derived from the predicted landmark locations are visually similar to the clinical ground truth.
我们提出一种新的基于补丁的迭代网络(PIN),用于在三维医学体积数据中快速准确地定位地标点。PIN利用卷积神经网络(CNN)来学习图像补丁与解剖地标位置之间的空间关系。在推理过程中,补丁会反复传入CNN,直到估计的地标位置收敛到真实地标位置。PIN计算效率高,因为推理阶段仅以迭代方式选择性地对少量补丁进行采样,而不是对体积数据中的每个位置进行密集采样。我们的方法采用多任务学习框架,将回归和分类相结合以提高定位精度。我们通过使用主成分分析将PIN扩展到多个地标点的定位,主成分分析对地标点之间的全局解剖关系进行建模。我们使用来自胎儿筛查检查的72幅三维超声图像对PIN进行了评估。PIN在定量上实现了平均地标定位误差为5.59毫米,每预测一个体积中的10个地标点运行时间为0.44秒。在定性方面,从预测地标位置导出的解剖二维标准扫描平面在视觉上与临床真实情况相似。