Suppr超能文献

使用基于补丁的迭代网络进行快速多地标定位

Fast Multiple Landmark Localisation Using a Patch-based Iterative Network.

作者信息

Li Yuanwei, Alansary Amir, Cerrolaza Juan J, Khanal Bishesh, Sinclair Matthew, Matthew Jacqueline, Gupta Chandni, Knight Caroline, Kainz Bernhard, Rueckert Daniel

机构信息

Biomedical Image Analysis Group Imperial College London UK.

School of Biomedical Engineering & Imaging Sciences King's College London UK.

出版信息

Med Image Comput Comput Assist Interv. 2018;2018:563-571. doi: 10.1007/978-3-030-00928-1_64. Epub 2018 Sep 26.

Abstract

We propose a new Patch-based Iterative Network (PIN) for fast and accurate landmark localisation in 3D medical volumes. PIN utilises a Convolutional Neural Network (CNN) to learn the spatial relationship between an image patch and anatomical landmark positions. During inference, patches are repeatedly passed to the CNN until the estimated landmark position converges to the true landmark location. PIN is computationally efficient since the inference stage only selectively samples a small number of patches in an iterative fashion rather than a dense sampling at every location in the volume. Our approach adopts a multitask learning framework that combines regression and classification to improve localisation accuracy. We extend PIN to localise multiple landmarks by using principal component analysis, which models the global anatomical relationships between landmarks. We have evaluated PIN using 72 3D ultrasound images from fetal screening examinations. PIN achieves quantitatively an average landmark localisation error of 5.59mm and a runtime of 0.44s to predict 10 landmarks per volume. Qualitatively, anatomical 2D standard scan planes derived from the predicted landmark locations are visually similar to the clinical ground truth.

摘要

我们提出一种新的基于补丁的迭代网络(PIN),用于在三维医学体积数据中快速准确地定位地标点。PIN利用卷积神经网络(CNN)来学习图像补丁与解剖地标位置之间的空间关系。在推理过程中,补丁会反复传入CNN,直到估计的地标位置收敛到真实地标位置。PIN计算效率高,因为推理阶段仅以迭代方式选择性地对少量补丁进行采样,而不是对体积数据中的每个位置进行密集采样。我们的方法采用多任务学习框架,将回归和分类相结合以提高定位精度。我们通过使用主成分分析将PIN扩展到多个地标点的定位,主成分分析对地标点之间的全局解剖关系进行建模。我们使用来自胎儿筛查检查的72幅三维超声图像对PIN进行了评估。PIN在定量上实现了平均地标定位误差为5.59毫米,每预测一个体积中的10个地标点运行时间为0.44秒。在定性方面,从预测地标位置导出的解剖二维标准扫描平面在视觉上与临床真实情况相似。

相似文献

1
Fast Multiple Landmark Localisation Using a Patch-based Iterative Network.
Med Image Comput Comput Assist Interv. 2018;2018:563-571. doi: 10.1007/978-3-030-00928-1_64. Epub 2018 Sep 26.
2
Deep Learning-Based Regression and Classification for Automatic Landmark Localization in Medical Images.
IEEE Trans Med Imaging. 2020 Dec;39(12):4011-4022. doi: 10.1109/TMI.2020.3009002. Epub 2020 Nov 30.
4
Multi-Scale 3D Cephalometric Landmark Detection Based on Direct Regression with 3D CNN Architectures.
Diagnostics (Basel). 2024 Nov 20;14(22):2605. doi: 10.3390/diagnostics14222605.
5
Fast and Accurate Craniomaxillofacial Landmark Detection via 3D Faster R-CNN.
IEEE Trans Med Imaging. 2021 Dec;40(12):3867-3878. doi: 10.1109/TMI.2021.3099509. Epub 2021 Nov 30.
6
Detecting Anatomical Landmarks From Limited Medical Imaging Data Using Two-Stage Task-Oriented Deep Neural Networks.
IEEE Trans Image Process. 2017 Oct;26(10):4753-4764. doi: 10.1109/TIP.2017.2721106. Epub 2017 Jun 28.
7
Discovering Salient Anatomical Landmarks by Predicting Human Gaze.
Proc IEEE Int Symp Biomed Imaging. 2020 Apr 3;2020:1711-1714. doi: 10.1109/ISBI45749.2020.9098505.
9
Landmark tracking in liver US images using cascade convolutional neural networks with long short-term memory.
Meas Sci Technol. 2023 May 1;34(5):054002. doi: 10.1088/1361-6501/acb5b3. Epub 2023 Feb 2.
10
Automatic location scheme of anatomical landmarks in 3D head MRI based on the scale attention hourglass network.
Comput Methods Programs Biomed. 2022 Feb;214:106564. doi: 10.1016/j.cmpb.2021.106564. Epub 2021 Dec 1.

引用本文的文献

1
Deep learning-based plane pose regression in obstetric ultrasound.
Int J Comput Assist Radiol Surg. 2022 May;17(5):833-839. doi: 10.1007/s11548-022-02609-z. Epub 2022 Apr 30.
2
Visual-Assisted Probe Movement Guidance for Obstetric Ultrasound Scanning using Landmark Retrieval.
Med Image Comput Comput Assist Interv. 2021 Sep 21;12908:670-679. doi: 10.1007/978-3-030-87237-3_64.
3
Studierfenster: an Open Science Cloud-Based Medical Imaging Analysis Platform.
J Digit Imaging. 2022 Apr;35(2):340-355. doi: 10.1007/s10278-021-00574-8. Epub 2022 Jan 21.
5
Fast and Accurate Craniomaxillofacial Landmark Detection via 3D Faster R-CNN.
IEEE Trans Med Imaging. 2021 Dec;40(12):3867-3878. doi: 10.1109/TMI.2021.3099509. Epub 2021 Nov 30.
6
Computer-assisted contralateral side comparison of the ankle joint using flat panel technology.
Int J Comput Assist Radiol Surg. 2021 May;16(5):767-777. doi: 10.1007/s11548-021-02329-w. Epub 2021 Apr 20.
8
Evaluating reinforcement learning agents for anatomical landmark detection.
Med Image Anal. 2019 Apr;53:156-164. doi: 10.1016/j.media.2019.02.007. Epub 2019 Feb 14.

本文引用的文献

1
Detecting Anatomical Landmarks From Limited Medical Imaging Data Using Two-Stage Task-Oriented Deep Neural Networks.
IEEE Trans Image Process. 2017 Oct;26(10):4753-4764. doi: 10.1109/TIP.2017.2721106. Epub 2017 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验