Divel Sarah E, Christensen Soren, Segars William P, Lansberg Maarten G, Pelc Norbert J
Departments of Electrical Engineering and Radiology, Stanford University, Stanford, CA, 94305, USA.
Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, 94305, USA.
Med Phys. 2021 Jul;48(7):3500-3510. doi: 10.1002/mp.14887. Epub 2021 May 9.
Physicians utilize cerebral perfusion maps (e.g., cerebral blood flow, cerebral blood volume, transit time) to prescribe the plan of care for stroke patients. Variability in scanning techniques and post-processing software can result in differences between these perfusion maps. To determine which techniques are acceptable for clinical care, it is important to validate the accuracy and reproducibility of the perfusion maps. Validation using clinical data is challenging due to the lack of a gold standard to assess cerebral perfusion and the impracticality of scanning patients multiple times with different scanning techniques. In contrast, simulated data from a realistic digital phantom of the cerebral perfusion in acute stroke patients would enable studies to optimize and validate the scanning and post-processing techniques.
We describe a complete framework to simulate CT perfusion studies for stroke assessment. We begin by expanding the XCAT brain phantom to enable spatially varying contrast agent dynamics and incorporate a realistic model of the dynamics in the cerebral vasculature derived from first principles. A dynamic CT simulator utilizes the time-concentration curves to define the contrast agent concentration in the object at each time point and generates CT perfusion images compatible with commercially available post-processing software. We also generate ground truth perfusion maps to which the maps generated by post-processing software can be compared.
We demonstrate a dynamic CT perfusion study of a simulated patient with an ischemic stroke and the resulting perfusion maps generated by post-processing software. We include a visual comparison between the computer-generated perfusion maps and the ground truth perfusion maps. The framework is highly tunable; users can modify the perfusion properties (e.g., occlusion location, CBF, CBV, and MTT), scanner specifications (e.g., focal spot size and detector configuration), scanning protocol (e.g., kVp and mAs), and reconstruction parameters (e.g., slice thickness and reconstruction filter).
This framework provides realistic test data with the underlying ground truth that enables a robust assessment of CT perfusion techniques and post-processing methods for stroke assessment.
医生利用脑灌注图(如脑血流量、脑血容量、通过时间)来制定中风患者的护理计划。扫描技术和后处理软件的差异可能导致这些灌注图之间存在差异。为了确定哪些技术适用于临床护理,验证灌注图的准确性和可重复性很重要。由于缺乏评估脑灌注的金标准,且用不同扫描技术对患者进行多次扫描不切实际,因此使用临床数据进行验证具有挑战性。相比之下,来自急性中风患者脑灌注真实数字模型的模拟数据将使研究能够优化和验证扫描及后处理技术。
我们描述了一个用于模拟中风评估的CT灌注研究的完整框架。我们首先扩展XCAT脑模型,以实现造影剂动力学的空间变化,并纳入基于第一原理推导的脑血管系统动力学的真实模型。动态CT模拟器利用时间-浓度曲线来定义每个时间点物体中的造影剂浓度,并生成与市售后处理软件兼容的CT灌注图像。我们还生成了可与后处理软件生成的图进行比较的真实灌注图。
我们展示了对一名模拟缺血性中风患者的动态CT灌注研究以及后处理软件生成的灌注图。我们包括了计算机生成的灌注图与真实灌注图之间的视觉比较。该框架具有高度可调节性;用户可以修改灌注属性(如闭塞位置、脑血流量、脑血容量和平均通过时间)、扫描仪规格(如焦点尺寸和探测器配置)、扫描协议(如千伏峰值和毫安秒)以及重建参数(如切片厚度和重建滤波器)。
该框架提供了具有真实基础事实的逼真测试数据,能够对用于中风评估的CT灌注技术和后处理方法进行有力评估。