Suppr超能文献

杜克仿真:计算机断层扫描中的一种真实、快速且与扫描仪特定的仿真框架。

DukeSim: A Realistic, Rapid, and Scanner-Specific Simulation Framework in Computed Tomography.

出版信息

IEEE Trans Med Imaging. 2019 Jun;38(6):1457-1465. doi: 10.1109/TMI.2018.2886530. Epub 2018 Dec 12.

Abstract

The purpose of this study was to develop a CT simulation platform that is: 1) compatible with voxel-based computational phantoms; 2) capable of modeling the geometry and physics of commercial CT scanners; and 3) computationally efficient. Such a simulation platform is designed to enable the virtual evaluation and optimization of CT protocols and parameters for achieving a targeted image quality while reducing radiation dose. Given a voxelized computational phantom and a parameter file describing the desired scanner and protocol, the developed platform DukeSim calculates projection images using a combination of ray-tracing and Monte Carlo techniques. DukeSim includes detailed models for the detector quantum efficiency, quantum and electronic noise, detector crosstalk, subsampling of the detector and focal spot areas, focal spot wobbling, and the bowtie filter. DukeSim was accelerated using GPU computing. The platform was validated using physical and computational versions of a phantom (Mercury phantom). Clinical and simulated CT scans of the phantom were acquired at multiple dose levels using a commercial CT scanner (Somatom Definition Flash; Siemens Healthcare). The real and simulated images were compared in terms of image contrast, noise magnitude, noise texture, and spatial resolution. The relative error between the clinical and simulated images was less than 1.4%, 0.5%, 2.6%, and 3%, for image contrast, noise magnitude, noise texture, and spatial resolution, respectively, demonstrating the high realism of DukeSim. The runtime, dependent on the imaging task and the hardware, was approximately 2-3 minutes per rotation in our study using a computer with 4 GPUs. DukeSim, when combined with realistic human phantoms, provides the necessary toolset with which to perform large-scale and realistic virtual clinical trials in a patient and scanner-specific manner.

摘要

本研究的目的是开发一种 CT 模拟平台,该平台具有以下特点:1)与体素计算体模兼容;2)能够对商业 CT 扫描仪的几何形状和物理特性进行建模;3)计算效率高。该模拟平台旨在实现 CT 协议和参数的虚拟评估和优化,以在降低辐射剂量的同时达到目标图像质量。给定一个体素化的计算体模和一个描述所需扫描仪和协议的参数文件,开发的 DukeSim 平台使用射线追踪和蒙特卡罗技术的组合来计算投影图像。DukeSim 包括详细的探测器量子效率模型、量子和电子噪声模型、探测器串扰模型、探测器和焦点区域的子采样模型、焦点抖动模型和楔形滤波器模型。DukeSim 利用 GPU 计算进行加速。该平台使用物理和计算版本的体模(Mercury 体模)进行验证。使用商用 CT 扫描仪(Siemens Healthcare 的 Somatom Definition Flash)在多个剂量水平下对体模进行临床和模拟 CT 扫描。在图像对比度、噪声幅度、噪声纹理和空间分辨率方面对真实图像和模拟图像进行了比较。临床图像和模拟图像之间的相对误差分别小于 1.4%、0.5%、2.6%和 3%,用于图像对比度、噪声幅度、噪声纹理和空间分辨率,表明 DukeSim 具有高度的真实性。在本研究中,使用具有 4 个 GPU 的计算机,根据成像任务和硬件的不同,运行时间大约为每分钟旋转 2-3 分钟。当与逼真的人体体模结合使用时,DukeSim 提供了必要的工具集,可以以患者和扫描仪特定的方式进行大规模和真实的虚拟临床试验。

相似文献

1
DukeSim: A Realistic, Rapid, and Scanner-Specific Simulation Framework in Computed Tomography.
IEEE Trans Med Imaging. 2019 Jun;38(6):1457-1465. doi: 10.1109/TMI.2018.2886530. Epub 2018 Dec 12.
2
A scanner-specific framework for simulating CT images with tube current modulation.
Phys Med Biol. 2021 Sep 13;66(18). doi: 10.1088/1361-6560/ac2269.
3
Development, validation, and simplification of a scanner-specific CT simulator.
Med Phys. 2024 Mar;51(3):2081-2095. doi: 10.1002/mp.16679. Epub 2023 Sep 1.
4
Task-based validation and application of a scanner-specific CT simulator using an anthropomorphic phantom.
Med Phys. 2022 Dec;49(12):7447-7457. doi: 10.1002/mp.15967. Epub 2022 Nov 12.
5
Development and Clinical Applications of a Virtual Imaging Framework for Optimizing Photon-counting CT.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12031. doi: 10.1117/12.2612079. Epub 2022 Apr 4.
7
A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms.
Phys Med Biol. 2005 Sep 7;50(17):3989-4004. doi: 10.1088/0031-9155/50/17/005. Epub 2005 Aug 11.
8
10
Effects of ray profile modeling on resolution recovery in clinical CT.
Med Phys. 2014 Feb;41(2):021907. doi: 10.1118/1.4862510.

引用本文的文献

1
Simulating and correcting the pileup effect in deep-silicon photon-counting CT.
Med Phys. 2025 Aug;52(8):e18075. doi: 10.1002/mp.18075.
3
In silico modeling of a clinical photon-counting CT system: Verification and validation.
Med Phys. 2025 Jun;52(6):3840-3853. doi: 10.1002/mp.17886. Epub 2025 May 13.
5
Effects of Intra-patient Lung Volume Variability on CT-Based Emphysema Quantification: A Virtual Imaging Study.
Acad Radiol. 2025 Aug;32(8):4913-4921. doi: 10.1016/j.acra.2025.04.042. Epub 2025 May 9.
6
XCAT 3.0: A comprehensive library of personalized digital twins derived from CT scans.
Med Image Anal. 2025 Jul;103:103636. doi: 10.1016/j.media.2025.103636. Epub 2025 May 3.
7
Quantitative Accuracy of CT Protocols for Cross-sectional and Longitudinal Assessment of COPD: A Virtual Imaging Study.
Proc SPIE Int Soc Opt Eng. 2025 Feb;13405. doi: 10.1117/12.3046945. Epub 2025 Apr 8.
8
Black-box Optimization of CT Acquisition and Reconstruction Parameters: A Reinforcement Learning Approach.
Proc SPIE Int Soc Opt Eng. 2025 Feb;13405. doi: 10.1117/12.3046807. Epub 2025 Apr 8.
9
Virtual lung screening trial (VLST): An in silico study inspired by the national lung screening trial for lung cancer detection.
Med Image Anal. 2025 Jul;103:103576. doi: 10.1016/j.media.2025.103576. Epub 2025 Apr 5.

本文引用的文献

1
Development of a Customizable Hepatic Arterial Tree and Particle Transport Model for Use in Treatment Planning.
IEEE Trans Radiat Plasma Med Sci. 2019 Jan;3(1):31-37. doi: 10.1109/trpms.2018.2842463. Epub 2018 May 31.
2
Modeling "Textured" Bones in Virtual Human Phantoms.
IEEE Trans Radiat Plasma Med Sci. 2019 Jan;3(1):47-53. doi: 10.1109/TRPMS.2018.2828083. Epub 2018 Apr 19.
3
Modeling Lung Architecture in the XCAT Series of Phantoms: Physiologically Based Airways, Arteries and Veins.
IEEE Trans Med Imaging. 2018 Mar;37(3):693-702. doi: 10.1109/TMI.2017.2769640.
5
Population of 224 realistic human subject-based computational breast phantoms.
Med Phys. 2016 Jan;43(1):23. doi: 10.1118/1.4937597.
7
VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients.
Phys Med Biol. 2015 Jul 21;60(14):5601-25. doi: 10.1088/0031-9155/60/14/5601. Epub 2015 Jul 2.
10
An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history.
Phys Med Biol. 2014 Sep 21;59(18):R233-302. doi: 10.1088/0031-9155/59/18/R233. Epub 2014 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验