MAPS:通过高内涵显微镜,机器辅助表型评分能够快速评估遗传变异的功能。
MAPS: machine-assisted phenotype scoring enables rapid functional assessment of genetic variants by high-content microscopy.
机构信息
Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T1Z3, Canada.
出版信息
BMC Bioinformatics. 2021 Apr 20;22(1):202. doi: 10.1186/s12859-021-04117-4.
BACKGROUND
Genetic testing is widely used in evaluating a patient's predisposition to hereditary diseases. In the case of cancer, when a functionally impactful mutation (i.e. genetic variant) is identified in a disease-relevant gene, the patient is at elevated risk of developing a lesion in their lifetime. Unfortunately, as the rate and coverage of genetic testing has accelerated, our ability to assess the functional status of new variants has fallen behind. Therefore, there is an urgent need for more practical, streamlined and cost-effective methods for classifying variants.
RESULTS
To directly address this issue, we designed a new approach that uses alterations in protein subcellular localization as a key indicator of loss of function. Thus, new variants can be rapidly functionalized using high-content microscopy (HCM). To facilitate the analysis of the large amounts of imaging data, we developed a new software toolkit, named MAPS for machine-assisted phenotype scoring, that utilizes deep learning to extract and classify cell-level features. MAPS helps users leverage cloud-based deep learning services that are easy to train and deploy to fit their specific experimental conditions. Model training is code-free and can be done with limited training images. Thus, MAPS allows cell biologists to easily incorporate deep learning into their image analysis pipeline. We demonstrated an effective variant functionalization workflow that integrates HCM and MAPS to assess missense variants of PTEN, a tumor suppressor that is frequently mutated in hereditary and somatic cancers.
CONCLUSIONS
This paper presents a new way to rapidly assess variant function using cloud deep learning. Since most tumor suppressors have well-defined subcellular localizations, our approach could be widely applied to functionalize variants of uncertain significance and help improve the utility of genetic testing.
背景
基因检测广泛用于评估患者遗传性疾病的易感性。在癌症的情况下,当在相关疾病基因中发现具有功能影响的突变(即遗传变异)时,患者在其一生中发展病变的风险增加。不幸的是,随着基因检测的速度和覆盖率的加快,我们评估新变体功能状态的能力已经落后。因此,迫切需要更实用、精简和具有成本效益的方法来对变体进行分类。
结果
为了直接解决这个问题,我们设计了一种新方法,该方法使用蛋白质亚细胞定位的改变作为功能丧失的关键指标。因此,可以使用高内涵显微镜(HCM)快速使新变体功能化。为了便于分析大量的成像数据,我们开发了一个名为 MAPS(用于机器辅助表型评分的软件工具包)的新软件工具包,该工具包利用深度学习提取和分类细胞水平的特征。MAPS 帮助用户利用易于训练和部署以适应其特定实验条件的云基深度学习服务。模型训练无需编写代码,并且可以使用有限的训练图像完成。因此,MAPS 允许细胞生物学家轻松地将深度学习纳入其图像分析管道。我们展示了一种有效的变体功能化工作流程,该流程集成了 HCM 和 MAPS,以评估 PTEN 的错义变体,PTEN 是一种在遗传性和体细胞癌症中经常发生突变的肿瘤抑制因子。
结论
本文提出了一种使用云深度学习快速评估变体功能的新方法。由于大多数肿瘤抑制因子具有明确的亚细胞定位,因此我们的方法可以广泛应用于功能化不确定意义的变体,并有助于提高基因检测的实用性。