一种使用大规模视觉变换器对革兰氏染色血培养玻片进行自动特征描述的新框架。

A novel framework for the automated characterization of Gram-stained blood culture slides using a large-scale vision transformer.

作者信息

McMahon Jack, Tomita Naofumi, Tatishev Elizabeth S, Workman Adrienne A, Costales Cristina R, Banaei Niaz, Martin Isabella W, Hassanpour Saeed

机构信息

Department of Computer Science, Dartmouth College, Hanover, New Hampshire, USA.

Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.

出版信息

J Clin Microbiol. 2025 Mar 12;63(3):e0151424. doi: 10.1128/jcm.01514-24. Epub 2025 Feb 24.

Abstract

UNLABELLED

This study introduces a new framework for the artificial intelligence-based characterization of Gram-stained whole-slide images (WSIs). As a test for the diagnosis of bloodstream infections, Gram stains provide critical early data to inform patient treatment in conjunction with data from rapid molecular tests. In this work, we developed a novel transformer-based model for Gram-stained WSI classification, which is more scalable to large data sets than previous convolutional neural network-based methods as it does not require patch-level manual annotations. We also introduce a large Gram stain data set from Dartmouth-Hitchcock Medical Center (Lebanon, New Hampshire, USA) to evaluate our model, exploring the classification of five major categories of Gram-stained WSIs: gram-positive cocci in clusters, gram-positive cocci in pairs/chains, gram-positive rods, gram-negative rods, and slides with no bacteria. Our model achieves a classification accuracy of 0.858 (95% CI: 0.805, 0.905) and an area under the receiver operating characteristic curve (AUC) of 0.952 (95% CI: 0.922, 0.976) using fivefold nested cross-validation on our 475-slide data set, demonstrating the potential of large-scale transformer models for Gram stain classification. Results were measured against the final clinical laboratory Gram stain report after growth of organism in culture. We further demonstrate the generalizability of our trained model by applying it without additional fine-tuning on a second 27-slide external data set from Stanford Health (Palo Alto, California, USA) where it achieves a binary classification accuracy of 0.926 (95% CI: 0.885, 0.960) and an AUC of 0.8651 (95% CI: 0.6337, 0.9917) while distinguishing gram-positive from gram-negative bacteria.

IMPORTANCE

This study introduces a scalable transformer-based deep learning model for automating Gram-stained whole-slide image classification. It surpasses previous methods by eliminating the need for manual annotations and demonstrates high accuracy and generalizability across multiple data sets, enhancing the speed and reliability of Gram stain analysis.

摘要

未标注

本研究引入了一种基于人工智能的革兰氏染色全玻片图像(WSIs)特征化新框架。作为血流感染诊断的一项检测,革兰氏染色结合快速分子检测的数据,为指导患者治疗提供关键的早期数据。在这项工作中,我们开发了一种用于革兰氏染色WSI分类的新型基于Transformer的模型,与先前基于卷积神经网络的方法相比,它对大数据集具有更强的扩展性,因为它不需要片层级别的人工注释。我们还引入了一个来自达特茅斯-希区柯克医疗中心(美国新罕布什尔州黎巴嫩)的大型革兰氏染色数据集来评估我们的模型,探索革兰氏染色WSIs的五个主要类别的分类:成簇的革兰氏阳性球菌、成对/成链的革兰氏阳性球菌、革兰氏阳性杆菌、革兰氏阴性杆菌以及无细菌的玻片。在我们的475张玻片数据集上使用五重嵌套交叉验证,我们的模型实现了0.858的分类准确率(95%置信区间:0.805,0.905)和0.952的受试者操作特征曲线下面积(AUC)(95%置信区间:0.922,0.976),证明了大规模Transformer模型用于革兰氏染色分类的潜力。结果是根据培养物中微生物生长后的最终临床实验室革兰氏染色报告来衡量的。我们通过将训练好的模型应用于来自斯坦福健康(美国加利福尼亚州帕洛阿尔托)的第二个27张玻片的外部数据集,在不进行额外微调的情况下进一步证明了我们训练模型的通用性,在区分革兰氏阳性菌和革兰氏阴性菌时,它实现了0.926的二元分类准确率(95%置信区间:0.885,0.960)和0.8651的AUC(95%置信区间:0.6337,0.9917)。

重要性

本研究引入了一种基于Transformer的可扩展深度学习模型,用于自动进行革兰氏染色全玻片图像分类。它通过消除对人工注释的需求超越了先前的方法,并在多个数据集上展示了高精度和通用性,提高了革兰氏染色分析的速度和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a63/11898657/b0373ee6210c/jcm.01514-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索