Mandigo Amy C, Yuan Wei, Xu Kexin, Gallagher Peter, Pang Angel, Guan Yi Fang, Shafi Ayesha A, Thangavel Chellappagounder, Sheehan Beshara, Bogdan Denisa, Paschalis Alec, McCann Jennifer J, Laufer Talya S, Gordon Nicolas, Vasilevskaya Irina A, Dylgjeri Emanuela, Chand Saswati N, Schiewer Matthew J, Domingo-Domenech Josep, Den Robert B, Holst Jeff, McCue Peter A, de Bono Johann S, McNair Christopher, Knudsen Karen E
Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
The Institute of Cancer Research, London, United Kingdom.
Cancer Discov. 2021 Sep;11(9):2334-2353. doi: 10.1158/2159-8290.CD-20-1114. Epub 2021 Apr 20.
Loss of the retinoblastoma (RB) tumor suppressor protein is a critical step in reprogramming biological networks that drive cancer progression, although mechanistic insight has been largely limited to the impact of RB loss on cell-cycle regulation. Here, isogenic modeling of RB loss identified disease stage-specific rewiring of E2F1 function, providing the first-in-field mapping of the E2F1 cistrome and transcriptome after RB loss across disease progression. Biochemical and functional assessment using both and models identified an unexpected, prominent role for E2F1 in regulation of redox metabolism after RB loss, driving an increase in the synthesis of the antioxidant glutathione, specific to advanced disease. These E2F1-dependent events resulted in protection from reactive oxygen species in response to therapeutic intervention. On balance, these findings reveal novel pathways through which RB loss promotes cancer progression and highlight potentially new nodes of intervention for treating RB-deficient cancers. SIGNIFICANCE: This study identifies stage-specific consequences of RB loss across cancer progression that have a direct impact on tumor response to clinically utilized therapeutics. The study herein is the first to investigate the effect of RB loss on global metabolic regulation and link RB/E2F1 to redox control in multiple advanced diseases..
视网膜母细胞瘤(RB)肿瘤抑制蛋白的缺失是重编程驱动癌症进展的生物网络的关键步骤,尽管其机制研究主要局限于RB缺失对细胞周期调控的影响。在此,RB缺失的同基因模型确定了E2F1功能在疾病阶段特异性的重新布线,提供了在疾病进展过程中RB缺失后E2F1顺式作用元件组和转录组的首次领域内图谱。使用两种模型进行的生化和功能评估确定了RB缺失后E2F1在氧化还原代谢调控中出人意料的突出作用,这推动了晚期疾病特有的抗氧化剂谷胱甘肽合成增加。这些E2F1依赖性事件导致在治疗干预时免受活性氧的影响。总体而言,这些发现揭示了RB缺失促进癌症进展的新途径,并突出了治疗RB缺陷型癌症潜在的新干预节点。意义:本研究确定了癌症进展过程中RB缺失的阶段特异性后果,这些后果对肿瘤对临床应用治疗的反应有直接影响。本文的研究首次探讨了RB缺失对整体代谢调控的影响,并将RB/E2F1与多种晚期疾病中的氧化还原控制联系起来。