Suppr超能文献

自制神经科学设备:用于钙成像的精密微操纵器和落射荧光显微镜

Building Your Own Neuroscience Equipment: A Precision Micromanipulator and an Epi-fluorescence Microscope for Calcium Imaging.

作者信息

Ryan James, Johnson Bruce R, Deitcher David

机构信息

Biology Department, Hobart and William Smith Colleges, Geneva, NY 14456.

Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853.

出版信息

J Undergrad Neurosci Educ. 2020 Dec 31;19(1):A134-A140. eCollection 2020 Fall.

Abstract

A faculty member's ability to develop meaningful research-oriented laboratories in neurobiology is often hampered by the rapid pace of new technologies and the increasing cost of equipment. To help undergraduate neuroscience faculty meet these challenges, we introduce two important neuroscience research tools we designed and built. The first is a precision micromanipulator for neurophysiology applications costing less than $40 USD. We compare data generated using the DIY manipulator with commercial micromanipulators costing over $1000. The second tool is our newly designed 3D printed epi-fluorescence microscope. Commercial fluorescence imaging devices often cost over $20,000, but our 3D printed version is constructed for less than $1200. This epi-fluorescence microscope uses interchangeable LED light sources and filter sets to image static fluorescence in prepared slides and calcium imaging of neuronal activity in living brains. This later technique uses transgenic flies with a genetically encoded calcium indicator, GCaMP, linked to green fluorescent protein (GFP). During an action potential, calcium ions (Ca) enter neurons and are observed as an increase in fluorescence intensity from a series of video images. These neuronal firing patterns can be assessed qualitatively and quantitatively to understand neural circuits leading to specific behaviors. We plan to develop curricula around the use of the epi-fluorescence microscope for calcium imaging in the next year, and to provide detailed parts sources and construction guides for the student and faculty DIY experience.

摘要

神经生物学领域教师开发有意义的以研究为导向的实验室的能力,常常因新技术的快速发展和设备成本的不断增加而受到阻碍。为帮助本科神经科学教师应对这些挑战,我们介绍两种我们设计并制造的重要神经科学研究工具。第一种是用于神经生理学应用的精密显微操作器,成本低于40美元。我们将使用自制操作器生成的数据与成本超过1000美元的商用显微操作器生成的数据进行比较。第二种工具是我们新设计的3D打印落射荧光显微镜。商用荧光成像设备通常成本超过20000美元,但我们的3D打印版本造价不到1200美元。这种落射荧光显微镜使用可互换的LED光源和滤光片组,对制备好的载玻片上的静态荧光进行成像,并对活体大脑中的神经元活动进行钙成像。后一种技术使用带有与绿色荧光蛋白(GFP)相连的基因编码钙指示剂GCaMP的转基因果蝇。在动作电位期间,钙离子(Ca)进入神经元,并在一系列视频图像中表现为荧光强度增加。这些神经元放电模式可以进行定性和定量评估,以了解导致特定行为的神经回路。我们计划在明年围绕使用落射荧光显微镜进行钙成像开发课程,并为学生和教师的自制体验提供详细的零件来源和制作指南。

相似文献

8
Soma-Targeted Imaging of Neural Circuits by Ribosome Tethering.通过核糖体锚定实现神经回路的靶向成像。
Neuron. 2020 Aug 5;107(3):454-469.e6. doi: 10.1016/j.neuron.2020.05.005. Epub 2020 Jun 22.

本文引用的文献

3
Using A Contrast Illusion to Teach Principles of Neural Processing.利用对比错觉讲解神经处理原理。
J Undergrad Neurosci Educ. 2018 Dec 15;17(1):A81-A88. eCollection 2018 Fall.
6
Reducing the Cost of Electrophysiology in the Teaching Laboratory.降低教学实验室中电生理学的成本。
J Undergrad Neurosci Educ. 2018 Sep 15;16(3):A277-A281. eCollection 2018 Summer.
7
Building an Inclusive Classroom.构建一个包容性的课堂。
J Undergrad Neurosci Educ. 2018 Sep 15;16(3):A268-A272. eCollection 2018 Summer.
10
In vivo imaging of neural activity.在体神经活动成像。
Nat Methods. 2017 Apr;14(4):349-359. doi: 10.1038/nmeth.4230. Epub 2017 Mar 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验