Martínez-Araya Jorge I, Morell Christophe
Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello (UNAB), Santiago, Chile.
Université de Lyon, Institut des Sciences Analytiques, UMR 5280,CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France.
J Comput Chem. 2021 Jun 15;42(16):1118-1125. doi: 10.1002/jcc.26526. Epub 2021 Apr 20.
Some Mo-oxo complexes bearing pyridine rings have the capability for dihydrogen production from water. However, energy barrier and overall energy vary depending on the effect exerted by several substituent groups located at different positions around one or more pyridine rings which are ligands of these compounds. Based on the Karunadasa and coworkers investigation where the para-position was experimentally tested in compounds derivatised from the 2,6-bis[1,1-bis(2-pyridil)ethyl]-pyridine oxo-molybdenum complex synthesized (Karunadasa et al., Nature, 2010, 464, 1329), we tested the combined effect of electron-withdrawing and electron-donating groups simulated as perturbations represented by point-charges. Then, we used the density polarization concept, δρ(r), a local reactivity descriptor corresponding to the partially integrated linear response function, χ(r, r') (a non-local reactivity descriptor), which is able to reveal different displacements of π-electrons on molecular structures. We perturbed the para-positions in the pentadentate ligand 2,6-bis[1,1-bis(2-pyridil)ethyl]-pyridine in the Mo-based complex by means of point-charges. They were located in three different configurations of the organic ligand (trans, geminal, and cis) which could help to explain energy barriers and overall energy of reactions catalyzed by this type of Mo-complexes. Our results indicate that the trans configuration of point-charges induces the most amount of fraction of electron shifted on the complex. A Mo-based complex bearing the same trans configuration for electron-withdrawing and electron-donating substituent groups (cyano and amino, respectively), leads to a kinetically more favorable H release than the cis or geminal configuration of the substituent groups aforementioned.
一些带有吡啶环的钼氧配合物具有从水中产生氢气的能力。然而,能垒和总能量会因位于一个或多个作为这些化合物配体的吡啶环周围不同位置的几个取代基所产生的影响而有所不同。基于卡鲁纳达萨及其同事的研究(在由合成的2,6 - 双[1,1 - 双(2 - 吡啶基)乙基] - 吡啶氧钼配合物衍生的化合物中对对位进行了实验测试,卡鲁纳达萨等人,《自然》,2010年,464卷,1329页),我们测试了以点电荷表示的微扰所模拟的吸电子基团和供电子基团的联合效应。然后,我们使用了密度极化概念δρ(r),它是一个与部分积分线性响应函数χ(r, r')(一个非局部反应性描述符)相对应的局部反应性描述符,能够揭示分子结构上π电子的不同位移。我们通过点电荷对钼基配合物中五齿配体2,6 - 双[1,1 - 双(2 - 吡啶基)乙基] - 吡啶的对位进行微扰。它们位于有机配体的三种不同构型(反式、偕式和顺式)中,这有助于解释这类钼配合物催化反应的能垒和总能量。我们的结果表明,点电荷的反式构型在配合物上诱导的电子转移分数最多。对于吸电子和供电子取代基(分别为氰基和氨基)具有相同反式构型的钼基配合物,与上述取代基的顺式或偕式构型相比,在动力学上更有利于氢的释放。