IEEE Trans Med Imaging. 2021 Nov;40(11):2976-2985. doi: 10.1109/TMI.2021.3074783. Epub 2021 Oct 27.
X-ray computed tomography (CT) is widely used clinically to diagnose a variety of diseases by reconstructing the tomographic images of a living subject using penetrating X-rays. For accurate CT image reconstruction, a precise imaging geometric model for the radiation attenuation process is usually required to solve the inversion problem of CT scanning, which encodes the subject into a set of intermediate representations in different angular positions. Here, we show that accurate CT image reconstruction can be subsequently achieved by downsampled imaging geometric modeling via deep-learning techniques. Specifically, we first propose a downsampled imaging geometric modeling approach for the data acquisition process and then incorporate it into a hierarchical neural network, which simultaneously combines both geometric modeling knowledge of the CT imaging system and prior knowledge gained from a data-driven training process for accurate CT image reconstruction. The proposed neural network is denoted as DSigNet, i.e., downsampled-imaging-geometry-based network for CT image reconstruction. We demonstrate the feasibility of the proposed DSigNet for accurate CT image reconstruction with clinical patient data. In addition to improving the CT image quality, the proposed DSigNet might help reduce the computational complexity and accelerate the reconstruction speed for modern CT imaging systems.
X 射线计算机断层扫描(CT)广泛应用于临床,通过使用穿透性 X 射线对活体进行断层图像重建来诊断各种疾病。为了进行精确的 CT 图像重建,通常需要使用精确的成像几何模型来解决 CT 扫描的反问题,该模型将物体编码为在不同角度位置的一组中间表示。在这里,我们表明通过深度学习技术进行下采样成像几何建模可以随后实现精确的 CT 图像重建。具体来说,我们首先提出了一种用于数据采集过程的下采样成像几何建模方法,然后将其合并到一个层次神经网络中,该网络同时结合了 CT 成像系统的几何建模知识以及来自数据驱动训练过程的先验知识,以实现精确的 CT 图像重建。所提出的神经网络被表示为 DSigNet,即基于下采样成像几何的 CT 图像重建网络。我们用临床患者数据证明了所提出的 DSigNet 用于精确 CT 图像重建的可行性。除了提高 CT 图像质量外,所提出的 DSigNet 还有助于降低现代 CT 成像系统的计算复杂度并加快重建速度。