文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

3D 深度学习技术在计算机断层扫描重建中的系统文献综述

A Systematic Literature Review of 3D Deep Learning Techniques in Computed Tomography Reconstruction.

机构信息

Department of Computer Games Development, Faculty of Computing & AI, Air University, E9, Islamabad 44000, Pakistan.

Department of Creative Technologies, Faculty of Computing & AI, Air University, E9, Islamabad 44000, Pakistan.

出版信息

Tomography. 2023 Dec 5;9(6):2158-2189. doi: 10.3390/tomography9060169.


DOI:10.3390/tomography9060169
PMID:38133073
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10748093/
Abstract

Computed tomography (CT) is used in a wide range of medical imaging diagnoses. However, the reconstruction of CT images from raw projection data is inherently complex and is subject to artifacts and noise, which compromises image quality and accuracy. In order to address these challenges, deep learning developments have the potential to improve the reconstruction of computed tomography images. In this regard, our research aim is to determine the techniques that are used for 3D deep learning in CT reconstruction and to identify the training and validation datasets that are accessible. This research was performed on five databases. After a careful assessment of each record based on the objective and scope of the study, we selected 60 research articles for this review. This systematic literature review revealed that convolutional neural networks (CNNs), 3D convolutional neural networks (3D CNNs), and deep learning reconstruction (DLR) were the most suitable deep learning algorithms for CT reconstruction. Additionally, two major datasets appropriate for training and developing deep learning systems were identified: 2016 NIH-AAPM-Mayo and MSCT. These datasets are important resources for the creation and assessment of CT reconstruction models. According to the results, 3D deep learning may increase the effectiveness of CT image reconstruction, boost image quality, and lower radiation exposure. By using these deep learning approaches, CT image reconstruction may be made more precise and effective, improving patient outcomes, diagnostic accuracy, and healthcare system productivity.

摘要

计算机断层扫描(CT)广泛应用于各种医学影像诊断。然而,从原始投影数据重建 CT 图像本质上是复杂的,并且容易受到伪影和噪声的影响,这会影响图像质量和准确性。为了解决这些挑战,深度学习的发展有可能改善 CT 图像的重建。在这方面,我们的研究目的是确定用于 CT 重建的 3D 深度学习技术,并确定可访问的培训和验证数据集。这项研究在五个数据库上进行。在根据研究的目标和范围仔细评估每个记录后,我们选择了 60 篇研究文章进行综述。这项系统文献综述表明,卷积神经网络(CNN)、3D 卷积神经网络(3D CNN)和深度学习重建(DLR)是最适合 CT 重建的深度学习算法。此外,还确定了两个适合训练和开发深度学习系统的主要数据集:2016 年 NIH-AAPM-Mayo 和 MSCT。这些数据集是创建和评估 CT 重建模型的重要资源。根据结果,3D 深度学习可以提高 CT 图像重建的有效性,提高图像质量,降低辐射暴露。通过使用这些深度学习方法,可以使 CT 图像重建更加精确和有效,从而改善患者的预后、诊断准确性和医疗保健系统的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/10748093/493a1324ba4b/tomography-09-00169-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/10748093/8cbaee406af5/tomography-09-00169-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/10748093/3f22eb337c9e/tomography-09-00169-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/10748093/b3c5e7184a48/tomography-09-00169-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/10748093/05b7b15bdd4c/tomography-09-00169-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/10748093/ca91a3faa4dd/tomography-09-00169-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/10748093/e0bc9d956add/tomography-09-00169-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/10748093/37de99444521/tomography-09-00169-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/10748093/493a1324ba4b/tomography-09-00169-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/10748093/8cbaee406af5/tomography-09-00169-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/10748093/3f22eb337c9e/tomography-09-00169-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/10748093/b3c5e7184a48/tomography-09-00169-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/10748093/05b7b15bdd4c/tomography-09-00169-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/10748093/ca91a3faa4dd/tomography-09-00169-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/10748093/e0bc9d956add/tomography-09-00169-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/10748093/37de99444521/tomography-09-00169-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/10748093/493a1324ba4b/tomography-09-00169-g008.jpg

相似文献

[1]
A Systematic Literature Review of 3D Deep Learning Techniques in Computed Tomography Reconstruction.

Tomography. 2023-12-5

[2]
The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis.

Eur Radiol. 2022-5

[3]
The value of FDG positron emission tomography/computerised tomography (PET/CT) in pre-operative staging of colorectal cancer: a systematic review and economic evaluation.

Health Technol Assess. 2011-9

[4]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[5]
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.

JBI Database System Rev Implement Rep. 2016-4

[6]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[7]
Diagnostic tests and algorithms used in the investigation of haematuria: systematic reviews and economic evaluation.

Health Technol Assess. 2006-6

[8]
Skin-CAD: Explainable deep learning classification of skin cancer from dermoscopic images by feature selection of dual high-level CNNs features and transfer learning.

Comput Biol Med. 2024-8

[9]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[10]
The educational effects of portfolios on undergraduate student learning: a Best Evidence Medical Education (BEME) systematic review. BEME Guide No. 11.

Med Teach. 2009-4

引用本文的文献

[1]
Clinical Applications of Artificial Intelligence in Periodontology: A Scoping Review.

Medicina (Kaunas). 2025-6-10

[2]
Explainable hybrid transformer for multi-classification of lung disease using chest X-rays.

Sci Rep. 2025-2-24

[3]
Updates on Methods for Body Composition Analysis: Implications for Clinical Practice.

Curr Obes Rep. 2025-1-11

[4]
Exploring the Application of the Artificial-Intelligence-Integrated Platform 3D Slicer in Medical Imaging Education.

Diagnostics (Basel). 2024-1-8

本文引用的文献

[1]
Enhanced Deep-Learning-Based Automatic Left-Femur Segmentation Scheme with Attribute Augmentation.

Sensors (Basel). 2023-6-19

[2]
Three-Dimensional Craniofacial Landmark Detection in Series of CT Slices Using Multi-Phased Regression Networks.

Diagnostics (Basel). 2023-6-1

[3]
Efficient Breast Cancer Diagnosis from Complex Mammographic Images Using Deep Convolutional Neural Network.

Comput Intell Neurosci. 2023

[4]
Deep learning image reconstruction algorithm: impact on image quality in coronary computed tomography angiography.

Radiol Med. 2023-4

[5]
Deep 3D reconstruction of synchrotron X-ray computed tomography for intact lungs.

Sci Rep. 2023-1-31

[6]
Detection of abnormal extraocular muscles in small datasets of computed tomography images using a three-dimensional variational autoencoder.

Sci Rep. 2023-1-31

[7]
A 2.5D Deep Learning-Based Method for Drowning Diagnosis Using Post-Mortem Computed Tomography.

IEEE J Biomed Health Inform. 2023-2

[8]
Deep learning image reconstruction algorithm for carotid dual-energy computed tomography angiography: evaluation of image quality and diagnostic performance.

Insights Imaging. 2022-11-26

[9]
Deep-E Enhanced Photoacoustic Tomography Using Three-Dimensional Reconstruction for High-Quality Vascular Imaging.

Sensors (Basel). 2022-10-12

[10]
A Deep Learning Approach for Liver and Tumor Segmentation in CT Images Using ResUNet.

Bioengineering (Basel). 2022-8-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索