Wang Sukai, Sun Xueqin, Li Yu, Wei Zhiqing, Guo Lina, Li Yihong, Chen Ping, Li Xuan
School of Computer Science and Technology, North University of China, Taiyuan 030051, China.
Shanxi Key Laboratory of Intelligent Detection Technology and Equipment, North University of China, Taiyuan 030051, China.
Tomography. 2025 Feb 26;11(3):23. doi: 10.3390/tomography11030023.
X-ray computed tomography (CT) imaging technology provides high-precision anatomical visualization of patients and has become a standard modality in clinical diagnostics. A widely adopted strategy to mitigate radiation exposure is sparse-view scanning. However, traditional iterative approaches require manual design of regularization priors and laborious parameter tuning, while deep learning methods either heavily depend on large datasets or fail to capture global image correlations.
Therefore, this paper proposes a combination of model-driven and data-driven methods, using the ADMM iterative algorithm framework to constrain the network to reduce its dependence on data samples and introducing the CNN and Transformer model to increase the ability to learn the global and local representation of images, further improving the accuracy of the reconstructed image.
The quantitative and qualitative results show the effectiveness of our method for sparse-view reconstruction compared with the current most advanced reconstruction algorithms, achieving a PSNR of 42.036 dB, SSIM of 0.979, and MAE of 0.011 at 32 views.
The proposed algorithm has effective capability in sparse-view CT reconstruction. Compared with other deep learning algorithms, the proposed algorithm has better generalization and higher reconstruction accuracy.
X射线计算机断层扫描(CT)成像技术能够为患者提供高精度的解剖结构可视化图像,已成为临床诊断中的标准检查方式。一种广泛采用的减少辐射暴露的策略是稀疏视图扫描。然而,传统的迭代方法需要手动设计正则化先验并进行繁琐的参数调整,而深度学习方法要么严重依赖大规模数据集,要么无法捕捉全局图像相关性。
因此,本文提出了一种模型驱动和数据驱动方法相结合的方式,使用交替方向乘子法(ADMM)迭代算法框架来约束网络,以减少其对数据样本的依赖,并引入卷积神经网络(CNN)和Transformer模型来增强学习图像全局和局部特征表示的能力,进一步提高重建图像的准确性。
定量和定性结果表明,与当前最先进的重建算法相比,我们的稀疏视图重建方法是有效的,在32视图时达到了42.036 dB的峰值信噪比(PSNR)、0.979的结构相似性指数(SSIM)和0.011的平均绝对误差(MAE)。
所提出的算法在稀疏视图CT重建中具有有效能力。与其他深度学习算法相比,该算法具有更好的泛化能力和更高的重建精度。