Suppr超能文献

基于深度对比学习的无标注组织聚类在病理图像分析中的应用。

Deep contrastive learning based tissue clustering for annotation-free histopathology image analysis.

机构信息

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Tencent AI Lab, Tencent, Shenzhen 518055, China; Department of Automation, Tsinghua University, Beijing 100091, China.

Tencent AI Lab, Tencent, Bellevue, WA 98004, USA.

出版信息

Comput Med Imaging Graph. 2022 Apr;97:102053. doi: 10.1016/j.compmedimag.2022.102053. Epub 2022 Mar 12.

Abstract

BACKGROUND

Deep convolutional neural networks (CNNs) have yielded promising results in automatic whole slide images (WSIs) processing for digital pathology in recent years. Training supervised CNNs usually requires a large amount of annotated samples. However, manual annotation of gigapixel WSIs is labor-intensive and error-prone, i.e., the shortage of annotations has become the major bottleneck of WSI diagnosis model development. In this work, we aim to develop a deep learning based self-supervised histopathology image analysis workflow that can classify tissues without any annotation.

METHODS

Inspired by the contrastive learning methods that have achieved state-of-the-art results on unsupervised representation learning for natural images, we adopt the self-supervised training scheme to generate discriminative embeddings from annotation-free WSI patches and simultaneously obtain initial clusters, which are further refined by a silhouette coefficient based recursive scheme to divide tissue mixture clusters. A multi-scale encoder network is specifically designed to extract pathology-specific contextual features. A tissue dictionary composed by the tissue clusters is then built for cancer diagnosis.

RESULTS

Experiments show that our method can identify different tissues in annotation-free conditions with competitive results (achieving the accuracy of 0.9364/0.9325 in human colorectal/sentinel lymph WSIs) as the supervised methods (with the corresponding accuracy of 0.9806/0.9494) and surpass other unsupervised baselines. Our method is also evaluated in a cohort of 20 clinical patients and get an AUC score of 0.99 to distinguish benign/malignant polyps.

CONCLUSION

Our proposed deep contrastive learning based tissue clustering method can learn from raw WSIs without annotation to distinguish different tissues. The method are tested in three different datasets and show the potential to help pathologists diagnosing diseases as a quantitative and qualitative tool.

摘要

背景

近年来,深度卷积神经网络(CNN)在数字病理学的自动全玻片图像(WSI)处理方面取得了有前景的成果。训练有监督的 CNN 通常需要大量标注样本。然而,千兆像素 WSI 的手动标注既费时又容易出错,即注释的缺乏已成为 WSI 诊断模型开发的主要瓶颈。在这项工作中,我们旨在开发一种基于深度学习的无监督组织病理学图像分析工作流程,该流程无需任何注释即可对组织进行分类。

方法

受无监督表示学习在自然图像方面取得的最新成果的对比学习方法的启发,我们采用自监督训练方案从无标注的 WSI 斑块中生成有区分性的嵌入,并同时获得初始聚类,然后通过基于轮廓系数的递归方案进一步细化这些聚类以划分组织混合聚类。特别设计了一个多尺度编码器网络来提取病理特异性的上下文特征。然后,构建由组织聚类组成的组织字典,用于癌症诊断。

结果

实验表明,我们的方法在无标注条件下可以识别不同的组织,具有竞争力的结果(在人类结直肠/前哨淋巴结 WSI 中达到 0.9364/0.9325 的准确率),与有监督方法(相应的准确率为 0.9806/0.9494)相当,并超越了其他无监督基线。我们的方法还在 20 名临床患者的队列中进行了评估,在区分良性/恶性息肉方面获得了 0.99 的 AUC 评分。

结论

我们提出的基于深度对比学习的组织聚类方法可以从原始 WSI 中学习而无需标注来区分不同的组织。该方法在三个不同的数据集上进行了测试,显示了作为一种定量和定性工具帮助病理学家诊断疾病的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验