Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.
The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, People's Republic of China.
Microb Cell Fact. 2021 Apr 21;20(1):86. doi: 10.1186/s12934-021-01578-3.
Polyketide synthases (PKSs) include ketone synthase (KS), acyltransferase (AT) and acyl carrier protein (ACP) domains to catalyse the elongation of polyketide chains. Some PKSs also contain ketoreductase (KR), dehydratase (DH) and enoylreductase (ER) domains as modification domains. Insertion, deletion or substitution of the catalytic domains may lead to the production of novel polyketide derivatives or to the accumulation of desired products. Epothilones are 16-membered macrolides that have been used as anticancer drugs. The substrate promiscuity of the module 4 AT domain of the epothilone PKS (EPOAT4) results in production of epothilone mixtures; substitution of this domain may change the ratios of epothilones. In addition, there are two dormant domains in module 9 of the epothilone PKS. Removing these redundant domains to generate a simpler and more efficient assembly line is a desirable goal.
The substitution of module 4 drastically diminished the activity of epothilone PKS. However, with careful design of the KS-AT linker and the post-AT linker, replacing EPOAT4 with EPOAT2, EPOAT6, EPOAT7 or EPOAT8 (specifically incorporating methylmalonyl-CoA (MMCoA)) significantly increased the ratio of epothilone D (4) to epothilone C (3) (the highest ratio of 4:3 = 4.6:1), whereas the ratio of 4:3 in the parental strain Schlegelella brevitalea 104-1 was 1.4:1. We also obtained three strains by swapping EPOAT4 with EPOAT3, EPOAT5, or EPOAT9, which specifically incorporate malonyl-CoA (MCoA). These strains produced only epothilone C, and the yield was increased by a factor of 1.8 compared to that of parental strain 104-1. Furthermore, mutations of five residues in the AT domain identified Ser310 as the critical factor for MMCoA recognition in EPOAT4. Then, the mutation of His308 to valine or tyrosine combined with the mutation of Phe310 to serine further altered the product ratios. At the same time, we successfully deleted the inactive module 9 DH and ER domains and fused the ΨKR domain with the KR domain through an ~ 25-residue linker to generate a productive and simplified epothilone PKS.
These results suggested that the substitution and deletion of catalytic domains effectively produces desirable compounds and that selection of the linkers between domains is crucial for maintaining intact PKS catalytic activity.
聚酮合酶(PKSs)包含酮合酶(KS)、酰基转移酶(AT)和酰基载体蛋白(ACP)结构域,以催化聚酮链的延伸。一些 PKS 还包含酮还原酶(KR)、脱水酶(DH)和烯酰还原酶(ER)结构域作为修饰结构域。催化结构域的插入、缺失或替换可能导致产生新的聚酮衍生物或积累所需的产物。埃博霉素是 16 元大环内酯类化合物,已被用作抗癌药物。埃博霉素 PKS(EPOAT4)模块 4 的 AT 结构域的底物多样性导致埃博霉素混合物的产生;该结构域的替换可能会改变埃博霉素的比例。此外,埃博霉素 PKS 的模块 9 中还有两个休眠结构域。生成更简单、更高效的装配线是去除这些冗余结构域的理想目标。
模块 4 的替换极大地降低了埃博霉素 PKS 的活性。然而,通过精心设计 KS-AT 接头和 AT 后接头,用 EPOAT2、EPOAT6、EPOAT7 或 EPOAT8(专门掺入甲基丙二酰辅酶 A(MMCoA))替换 EPOAT4,显著增加了埃博霉素 D(4)与埃博霉素 C(3)的比例(最高比例为 4:3=4.6:1),而亲本菌株 Schlegelella brevitalea 104-1 的 4:3 比例为 1.4:1。我们还通过用 EPOAT3、EPOAT5 或 EPOAT9 替换 EPOAT4 获得了三个菌株,它们专门掺入丙二酰辅酶 A(MCoA)。这些菌株仅产生埃博霉素 C,与亲本菌株 104-1 相比,产量增加了 1.8 倍。此外,在 AT 结构域中 5 个残基的突变鉴定出丝氨酸 310 是 EPOAT4 中 MMCoA 识别的关键因素。然后,将组氨酸 308 突变为缬氨酸或酪氨酸,同时将苯丙氨酸 310 突变为丝氨酸,进一步改变了产物比例。同时,我们成功删除了无活性的模块 9 DH 和 ER 结构域,并通过一个约 25 个残基的接头将 ΨKR 结构域与 KR 结构域融合,生成了一个有生产力和简化的埃博霉素 PKS。
这些结果表明,催化结构域的替换和缺失有效地产生了所需的化合物,并且结构域之间的接头的选择对于维持完整的 PKS 催化活性至关重要。