Suppr超能文献

基于迁移学习和元数据的常规 CT 和 FDG PET/CT 用于肺癌鉴别诊断的深度学习系统性能评估

Performance Evaluation of a Deep Learning System for Differential Diagnosis of Lung Cancer With Conventional CT and FDG PET/CT Using Transfer Learning and Metadata.

机构信息

Department of Computer Science, Yonsei University, Seoul, South Korea.

From the Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul.

出版信息

Clin Nucl Med. 2021 Aug 1;46(8):635-640. doi: 10.1097/RLU.0000000000003661.

Abstract

PURPOSE

We aimed to evaluate the performance of a deep learning system for differential diagnosis of lung cancer with conventional CT and FDG PET/CT using transfer learning (TL) and metadata.

METHODS

A total of 359 patients with a lung mass or nodule who underwent noncontrast chest CT and FDG PET/CT prior to treatment were enrolled retrospectively. All pulmonary lesions were classified by pathology (257 malignant, 102 benign). Deep learning classification models based on ResNet-18 were developed using the pretrained weights obtained from ImageNet data set. We propose a deep TL model for differential diagnosis of lung cancer using CT imaging data and metadata with SUVmax and lesion size derived from PET/CT. The area under the receiver operating characteristic curve (AUC) of the deep learning model was measured as a performance metric and verified by 5-fold cross-validation.

RESULTS

The performance metrics of the conventional CT model were generally better than those of the CT of PET/CT model. Introducing metadata with SUVmax and lesion size derived from PET/CT into baseline CT models improved the diagnostic performance of the CT of PET/CT model (AUC = 0.837 vs 0.762) and the conventional CT model (AUC = 0.877 vs 0.817).

CONCLUSIONS

Deep TL models with CT imaging data provide good diagnostic performance for lung cancer, and the conventional CT model showed overall better performance than the CT of PET/CT model. Metadata information derived from PET/CT can improve the performance of deep learning systems.

摘要

目的

我们旨在使用迁移学习(TL)和元数据评估基于深度学习的系统对常规 CT 和 FDG PET/CT 进行肺癌鉴别诊断的性能。

方法

回顾性纳入了 359 例因肺部肿块或结节接受治疗前非增强胸部 CT 和 FDG PET/CT 的患者。所有肺病变均经病理分类(257 例恶性,102 例良性)。使用从 ImageNet 数据集获得的预训练权重,开发了基于 ResNet-18 的深度学习分类模型。我们提出了一种基于 CT 成像数据和元数据的深度学习 TL 模型,元数据包括来自 PET/CT 的 SUVmax 和病变大小。使用受试者工作特征曲线下面积(AUC)作为性能指标来衡量深度学习模型的性能,并通过 5 折交叉验证进行验证。

结果

常规 CT 模型的性能指标通常优于 CT-PET/CT 模型。将来自 PET/CT 的 SUVmax 和病变大小的元数据引入基线 CT 模型可提高 CT-PET/CT 模型(AUC=0.837 比 0.762)和常规 CT 模型(AUC=0.877 比 0.817)的诊断性能。

结论

具有 CT 成像数据的深度 TL 模型可为肺癌提供良好的诊断性能,且常规 CT 模型的总体性能优于 CT-PET/CT 模型。来自 PET/CT 的元数据信息可以提高深度学习系统的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验