Yang Huan, Yang Minglei, Chen Jiani, Yao Guocong, Zou Quan, Jia Linpei
Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Chengdian Road, Kecheng District, Quzhou 324000, Zhejiang, China.
Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Dong Road, Erqi District, Zhengzhou 450052, Henan, China.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae699.
The burgeoning accumulation of large-scale biomedical data in oncology, alongside significant strides in deep learning (DL) technologies, has established multimodal DL (MDL) as a cornerstone of precision oncology. This review provides an overview of MDL applications in this field, based on an extensive literature survey. In total, 651 articles published before September 2024 are included. We first outline publicly available multimodal datasets that support cancer research. Then, we discuss key DL training methods, data representation techniques, and fusion strategies for integrating multimodal data. The review also examines MDL applications in tumor segmentation, detection, diagnosis, prognosis, treatment selection, and therapy response monitoring. Finally, we critically assess the limitations of current approaches and propose directions for future research. By synthesizing current progress and identifying challenges, this review aims to guide future efforts in leveraging MDL to advance precision oncology.
肿瘤学领域大规模生物医学数据的迅速积累,以及深度学习(DL)技术的重大进展,已使多模态深度学习(MDL)成为精准肿瘤学的基石。基于广泛的文献调查,本综述概述了MDL在该领域的应用。总共纳入了2024年9月之前发表的651篇文章。我们首先概述支持癌症研究的公开可用多模态数据集。然后,我们讨论关键的深度学习训练方法、数据表示技术以及整合多模态数据的融合策略。本综述还考察了MDL在肿瘤分割、检测、诊断、预后、治疗选择和治疗反应监测中的应用。最后,我们批判性地评估当前方法的局限性,并提出未来研究的方向。通过综合当前进展并识别挑战,本综述旨在指导未来利用MDL推进精准肿瘤学的工作。