Suppr超能文献

眼底照相和光相干断层扫描的野生患者特定信息评估。

Assessment of patient specific information in the wild on fundus photography and optical coherence tomography.

机构信息

Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland.

Bern Photographic Reading Center (BPRC), Bern University Hospital, Inselspital, Bern, Switzerland.

出版信息

Sci Rep. 2021 Apr 21;11(1):8621. doi: 10.1038/s41598-021-86577-5.

Abstract

In this paper we analyse the performance of machine learning methods in predicting patient information such as age or sex solely from retinal imaging modalities in a heterogeneous clinical population. Our dataset consists of N = 135,667 fundus images and N = 85,536 volumetric OCT scans. Deep learning models were trained to predict the patient's age and sex from fundus images, OCT cross sections and OCT volumes. For sex prediction, a ROC AUC of 0.80 was achieved for fundus images, 0.84 for OCT cross sections and 0.90 for OCT volumes. Age prediction mean absolute errors of 6.328 years for fundus, 5.625 years for OCT cross sections and 4.541 for OCT volumes were observed. We assess the performance of OCT scans containing different biomarkers and note a peak performance of AUC = 0.88 for OCT cross sections and 0.95 for volumes when there is no pathology on scans. Performance drops in case of drusen, fibrovascular pigment epitheliuum detachment and geographic atrophy present. We conclude that deep learning based methods are capable of classifying the patient's sex and age from color fundus photography and OCT for a broad spectrum of patients irrespective of underlying disease or image quality. Non-random sex prediction using fundus images seems only possible if the eye fovea and optic disc are visible.

摘要

在本文中,我们分析了机器学习方法在从异质临床人群的视网膜成像模式中仅预测患者信息(如年龄或性别)方面的性能。我们的数据集包括 N = 135667 张眼底图像和 N = 85536 张容积 OCT 扫描。深度学习模型被训练用于从眼底图像、OCT 横断面和 OCT 体积预测患者的年龄和性别。对于性别预测,眼底图像的 ROC AUC 为 0.80,OCT 横断面为 0.84,OCT 体积为 0.90。眼底图像的年龄预测平均绝对误差为 6.328 岁,OCT 横断面为 5.625 岁,OCT 体积为 4.541 岁。我们评估了包含不同生物标志物的 OCT 扫描的性能,并注意到在扫描无病变时,OCT 横断面的 AUC 峰值为 0.88,体积的 AUC 峰值为 0.95。在存在 drusen、fibrovascular pigment epitheliuum 脱离和地理萎缩的情况下,性能会下降。我们得出结论,基于深度学习的方法能够从彩色眼底摄影和 OCT 对广泛的患者进行分类,无论潜在疾病或图像质量如何。如果眼底的黄斑和视盘不可见,则似乎只能使用眼底图像进行非随机性别预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1beb/8060417/46c3dbb178f3/41598_2021_86577_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验