Suppr超能文献

基于眼科B超超声图像的自动机器学习在检测眼底疾病中的性能。

Performance of automated machine learning in detecting fundus diseases based on ophthalmologic B-scan ultrasound images.

作者信息

Wei Qiaoling, Chen Qian, Zhao Chen, Jiang Rui

机构信息

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.

Ocular Trauma Center, Eye & ENT Hospital, Fudan University, Shanghai, China.

出版信息

BMJ Open Ophthalmol. 2024 Dec 11;9(1):e001873. doi: 10.1136/bmjophth-2024-001873.

Abstract

AIM

To evaluate the efficacy of automated machine learning (AutoML) models in detecting fundus diseases using ocular B-scan ultrasound images.

METHODS

Ophthalmologists annotated two B-scan ultrasound image datasets to develop three AutoML models-single-label, multi-class single-label and multi-label-on the Vertex artificial intelligence (AI) platform. Performance of these models was compared among themselves and against existing bespoke models for binary classification tasks.

RESULTS

The training set involved 3938 images from 1378 patients, while batch predictions used an additional set of 336 images from 180 patients. The single-label AutoML model, trained on normal and abnormal fundus images, achieved an area under the precision-recall curve (AUPRC) of 0.9943. The multi-class single-label model, focused on single-pathology images, recorded an AUPRC of 0.9617, with performance metrics of these two single-label models proving comparable to those of previously published models. The multi-label model, designed to detect both single and multiple pathologies, posted an AUPRC of 0.9650. Pathology classification AUPRCs for the multi-class single-label model ranged from 0.9277 to 1.0000 and from 0.8780 to 0.9980 for the multi-label model. Batch prediction accuracies ranged from 86.57% to 97.65% for various fundus conditions in the multi-label AutoML model. Statistical analysis demonstrated that the single-label model significantly outperformed the other two models in all evaluated metrics (p<0.05).

CONCLUSION

AutoML models, developed by clinicians, effectively detected multiple fundus lesions with performance on par with that of deep-learning models crafted by AI specialists. This underscores AutoML's potential to revolutionise ophthalmologic diagnostics, facilitating broader accessibility and application of sophisticated diagnostic technologies.

摘要

目的

评估自动机器学习(AutoML)模型在使用眼部B超图像检测眼底疾病方面的疗效。

方法

眼科医生标注了两个B超图像数据集,以在Vertex人工智能(AI)平台上开发三个AutoML模型——单标签、多类单标签和多标签模型。将这些模型自身之间以及与现有的定制模型在二元分类任务中的性能进行了比较。

结果

训练集包括来自1378名患者的3938张图像,而批量预测使用了来自180名患者的另外336张图像。在正常和异常眼底图像上训练的单标签AutoML模型,其精确率-召回率曲线下面积(AUPRC)达到0.9943。专注于单病理学图像的多类单标签模型的AUPRC为0.9617,这两个单标签模型的性能指标证明与先前发表的模型相当。旨在检测单病理学和多病理学的多标签模型的AUPRC为0.9650。多类单标签模型的病理学分类AUPRC范围为0.9277至1.0000,多标签模型为0.8780至0.9980。多标签AutoML模型中各种眼底情况的批量预测准确率范围为86.57%至97.65%。统计分析表明,单标签模型在所有评估指标上均显著优于其他两个模型(p<0.05)。

结论

临床医生开发的AutoML模型有效地检测了多种眼底病变,其性能与人工智能专家精心制作的深度学习模型相当。这凸显了AutoML在革新眼科诊断方面的潜力,有助于更广泛地获取和应用先进的诊断技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cd/11647328/cf6d25a0ab8a/bmjophth-9-1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验