Suppr超能文献

评估阿片类药物政策有效性的方法学挑战与建议解决方案

Methodological Challenges and Proposed Solutions for Evaluating Opioid Policy Effectiveness.

作者信息

Schuler Megan S, Griffin Beth Ann, Cerdá Magdalena, McGinty Emma E, Stuart Elizabeth A

机构信息

RAND Corporation, 20 Park Plaza #920, Boston MA USA 02216.

RAND Corporation, 1200 S Hayes Street, Arlington VA USA 22202.

出版信息

Health Serv Outcomes Res Methodol. 2021 Mar;21(1):21-41. doi: 10.1007/s10742-020-00228-2. Epub 2020 Nov 12.

Abstract

Opioid-related mortality increased by nearly 400% between 2000 and 2018. In response, federal, state, and local governments have enacted a heterogeneous collection of opioid-related policies in an effort to reverse the opioid crisis, producing a policy landscape that is both complex and dynamic. Correspondingly, there has been a rise in opioid-policy related evaluation studies, as policymakers and other stakeholders seek to understand which policies are most effective. In this paper, we provide an overview of methodological challenges facing opioid policy researchers when evaluating the effects of opioid policies using observational data, as well as some potential solutions to those challenges. In particular, we discuss the following key challenges: (1) Obtaining high-quality opioid policy data; (2) Appropriately operationalizing and specifying opioid policies; (3) Obtaining high-quality opioid outcome data; (4) Addressing confounding due to systematic differences between policy and non-policy states; (5) Identifying heterogeneous policy effects across states, population subgroups, and time; (6) Disentangling effects of concurrent policies; and (7) Overcoming limited statistical power to detect policy effects afforded by commonly-used methods. We discuss each of these challenges and propose some ways forward to address them. Increasing the methodological rigor of opioid evaluation studies is imperative to identifying and implementing opioid policies that are most effective at reducing opioid-related harms.

摘要

2000年至2018年间,与阿片类药物相关的死亡率增长了近400%。作为回应,联邦、州和地方政府制定了一系列五花八门的阿片类药物相关政策,试图扭转阿片类药物危机,形成了一个既复杂又动态的政策局面。相应地,随着政策制定者和其他利益相关者试图了解哪些政策最有效,与阿片类药物政策相关的评估研究也有所增加。在本文中,我们概述了阿片类药物政策研究人员在使用观察性数据评估阿片类药物政策效果时面临的方法学挑战,以及应对这些挑战的一些潜在解决方案。具体而言,我们讨论以下关键挑战:(1)获取高质量的阿片类药物政策数据;(2)恰当地实施和明确阿片类药物政策;(3)获取高质量的阿片类药物结果数据;(4)解决因政策实施州和非政策实施州之间的系统差异导致的混杂问题;(5)识别各州、人群亚组和不同时间的异质性政策效果;(6)厘清并行政策的效果;(7)克服常用方法在检测政策效果方面统计效力有限的问题。我们讨论了每一项挑战,并提出了一些应对方法。提高阿片类药物评估研究的方法严谨性对于识别和实施最有效地减少阿片类药物相关危害的政策至关重要。

相似文献

1
Methodological Challenges and Proposed Solutions for Evaluating Opioid Policy Effectiveness.
Health Serv Outcomes Res Methodol. 2021 Mar;21(1):21-41. doi: 10.1007/s10742-020-00228-2. Epub 2020 Nov 12.
2
Methodological considerations for estimating policy effects in the context of co-occurring policies.
Health Serv Outcomes Res Methodol. 2023;23(2):149-165. doi: 10.1007/s10742-022-00284-w. Epub 2022 Jul 9.
3
The state of the science in opioid policy research.
Drug Alcohol Depend. 2020 Sep 1;214:108137. doi: 10.1016/j.drugalcdep.2020.108137. Epub 2020 Jun 27.
4
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
6
7
Systematic Evaluation of State Policy Interventions Targeting the US Opioid Epidemic, 2007-2018.
JAMA Netw Open. 2021 Feb 1;4(2):e2036687. doi: 10.1001/jamanetworkopen.2020.36687.
9
10
Deployment of personnel to military operations: impact on mental health and social functioning.
Campbell Syst Rev. 2018 Jun 1;14(1):1-127. doi: 10.4073/csr.2018.6. eCollection 2018.

引用本文的文献

2
Estimating Prevalence of Opioid Misuse in North Carolina Counties From 2016 to 2021: An Integrated Abundance Model Approach.
Epidemiology. 2025 May 1;36(3):310-318. doi: 10.1097/EDE.0000000000001838. Epub 2025 Jan 24.
4
High-Dose Opioid Prescribing in Individuals with Acute Pain: Assessing the Effects of US State Opioid Policies.
J Gen Intern Med. 2024 Nov;39(14):2689-2697. doi: 10.1007/s11606-024-08947-9. Epub 2024 Jul 19.
5
A Longitudinal Multivariable Analysis: State Policies and Opioid Dispensing in Medicare Beneficiaries Undergoing Surgery.
J Gen Intern Med. 2024 Nov;39(15):2942-2951. doi: 10.1007/s11606-024-08888-3. Epub 2024 Jul 17.
6
Drug-related physician continuing medical education requirements, 2010-2020.
J Subst Use Addict Treat. 2024 Jun;161:209356. doi: 10.1016/j.josat.2024.209356. Epub 2024 Mar 27.
8
Why higher copayments for opioids did not reduce use among Medicare beneficiaries.
Health Econ. 2024 Mar;33(3):466-481. doi: 10.1002/hec.4779. Epub 2023 Nov 20.
9
Identifying Optimal Methods for Addressing Confounding Bias When Estimating the Effects of State-level Policies.
Epidemiology. 2023 Nov 1;34(6):856-864. doi: 10.1097/EDE.0000000000001659. Epub 2023 Sep 26.
10
A Bayesian Spatio-temporal Model to Optimize Allocation of Buprenorphine in North Carolina.
Stat Public Policy (Phila). 2023;10(1). doi: 10.1080/2330443x.2023.2218448. Epub 2023 Jun 29.

本文引用的文献

2
We Need a Taxonomy of State-Level Opioid Policies.
JAMA Health Forum. 2020 Feb;1(2). doi: 10.1001/jamahealthforum.2020.0050. Epub 2020 Feb 5.
4
The state of the science in opioid policy research.
Drug Alcohol Depend. 2020 Sep 1;214:108137. doi: 10.1016/j.drugalcdep.2020.108137. Epub 2020 Jun 27.
5
Changes in firearm mortality following the implementation of state laws regulating firearm access and use.
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14906-14910. doi: 10.1073/pnas.1921965117. Epub 2020 Jun 15.
6
Buprenorphine prescription dispensing rates and characteristics following federal changes in prescribing policy, 2017-2018: A cross-sectional study.
Drug Alcohol Depend. 2020 Aug 1;213:108083. doi: 10.1016/j.drugalcdep.2020.108083. Epub 2020 May 25.
8
Commentary on Boslett et al. (2020): Towards better measurement of drug involvement in fatal overdoses.
Addiction. 2020 Jul;115(7):1318-1319. doi: 10.1111/add.14988. Epub 2020 Feb 27.
10
The Growing Field of Legal Epidemiology.
J Public Health Manag Pract. 2020 Mar/Apr;26 Suppl 2, Advancing Legal Epidemiology:S4-S9. doi: 10.1097/PHH.0000000000001133.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验