Suppr超能文献

在同时存在多项政策的背景下评估政策效果的方法学考量。

Methodological considerations for estimating policy effects in the context of co-occurring policies.

作者信息

Griffin Beth Ann, Schuler Megan S, Pane Joseph, Patrick Stephen W, Smart Rosanna, Stein Bradley D, Grimm Geoffrey, Stuart Elizabeth A

机构信息

RAND Corporation, 1200 South Hayes Street, Arlington, VA 22202-5050 USA.

RAND Corporation, Pittsburgh, PA USA.

出版信息

Health Serv Outcomes Res Methodol. 2023;23(2):149-165. doi: 10.1007/s10742-022-00284-w. Epub 2022 Jul 9.

Abstract

Understanding how best to estimate state-level policy effects is important, and several unanswered questions remain, particularly about the ability of statistical models to disentangle the effects of concurrently enacted policies. In practice, many policy evaluation studies do not attempt to control for effects of co-occurring policies, and this issue has not received extensive attention in the methodological literature to date. In this study, we utilized Monte Carlo simulations to assess the impact of co-occurring policies on the performance of commonly-used statistical models in state policy evaluations. Simulation conditions varied effect sizes of the co-occurring policies and length of time between policy enactment dates, among other factors. Outcome data (annual state-specific opioid mortality rate per 100,000) were obtained from 1999 to 2016 National Vital Statistics System (NVSS) Multiple Cause of Death mortality files, thus yielding longitudinal annual state-level data over 18 years from 50 states. When co-occurring policies are ignored (i.e., omitted from the analytic model), our results demonstrated that high relative bias (> 82%) arises, particularly when policies are enacted in rapid succession. Moreover, as expected, controlling for all co-occurring policies will effectively mitigate the threat of confounding bias; however, effect estimates may be relatively imprecise (i.e., larger variance) when policies are enacted in near succession. Our findings highlight several key methodological issues regarding co-occurring policies in the context of opioid-policy research yet also generalize more broadly to evaluation of other state-level policies, such as policies related to firearms or COVID-19, showcasing the need to think critically about co-occurring policies that are likely to influence the outcome when specifying analytic models.

摘要

了解如何最好地估计州级政策的效果非常重要,目前仍有几个未解决的问题,特别是关于统计模型区分同时颁布的政策效果的能力。在实践中,许多政策评估研究并未尝试控制同时出现的政策的影响,而且这个问题在方法论文献中至今尚未得到广泛关注。在本研究中,我们利用蒙特卡洛模拟来评估同时出现的政策对州政策评估中常用统计模型性能的影响。模拟条件在同时出现的政策的效应大小和政策颁布日期之间的时间长度等因素方面有所不同。结果数据(每10万人的年度州特定阿片类药物死亡率)来自1999年至2016年国家生命统计系统(NVSS)多死因死亡率文件,从而产生了来自50个州18年的纵向年度州级数据。当忽略同时出现的政策时(即从分析模型中省略),我们的结果表明会出现高相对偏差(>82%),特别是当政策相继迅速颁布时。此外,正如预期的那样,控制所有同时出现的政策将有效减轻混杂偏差的威胁;然而,当政策相继颁布时,效应估计可能相对不精确(即方差较大)。我们的研究结果突出了阿片类药物政策研究背景下与同时出现的政策相关的几个关键方法论问题,但也更广泛地适用于其他州级政策的评估,例如与枪支或COVID-19相关的政策,这表明在指定分析模型时需要批判性地思考可能影响结果的同时出现的政策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7039/10072919/929939838249/10742_2022_284_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验